Performance-Enhanced Triboelectric Nanogenerator Based on the Double-Layered Electrode Effect.

Polymers (Basel)

Department of Electronic Engineering, Institute for Wearable Convergence Electronics, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin 17104, Korea.

Published: November 2020

Recently, studies on enhancing the performance of triboelectric nanogenerators (TENGs) by forming nanostructures at the contacting interface have been actively reported. In this study, a double-layered bottom electrode TENG (DE-TENG) was successfully fabricated using a metal deposition layer after the water-assisted oxidation (WAO) process. As previously reported, the WAO process for the enhancement of electrical performance increases the effective contact area with an inherent surface oxidation layer (AlO). As a new approach for modifying deficiencies in the WAO process, a metal deposition onto the oxidation layer was successfully developed with increased device output performance by restoring the surface conductivity. The proposed metal-dielectric-metal sandwich-structured DE-TENG generated approximately twice the electrical output generated by the WAO process alone (WAO-TENG). This dramatically improved electrical output was proven by a theoretical demonstration based on a double capacitance structure. In addition, the double capacitance structure was confirmed with the aid of a field emission scanning electron microscope. The optimal point at which the DE-TENG generates the highest electrical outputs was observed at a specific Cu layer sputtering time. The exceptional durability of the DE-TENG was proved by the 1 h endurance test under various relative humidity conditions. The potential of a self-powered force sensor using this DE-TENG is demonstrated, having a comparably high sensitivity of 0.82 V/N. Considering its structure, increased electrical energy, easy fabrication, and its durability, this novel DE-TENG is a promising candidate for the self-powered energy harvesting technology in our near future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7760267PMC
http://dx.doi.org/10.3390/polym12122854DOI Listing

Publication Analysis

Top Keywords

wao process
16
metal deposition
8
oxidation layer
8
electrical output
8
double capacitance
8
capacitance structure
8
de-teng
6
electrical
5
performance-enhanced triboelectric
4
triboelectric nanogenerator
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!