Thin Titanium films were fabricated on quartz substrates by radio frequency magnetron sputtering under high vacuum. Subsequent annealing at temperatures of 600 ∘C in air resulted in single-phase TiO2 with the structure of rutile, as X-ray diffraction experiment demonstrates. Atomic-force microscopy images verify the high crystalline quality and allow us to determine the grain size even for ultrathin TiO2 films. Rutile has a direct energy band gap at about 3.0-3.2 eV; however, the transitions between the valence and conduction band are dipole forbidden. Just a few meV above that, there is an indirect band gap. The first intense absorption peak appears at about 4 eV. Tauc plots for the position of the indirect band gap show a "blue shift" with decreasing film thickness. Moreover, we find a similar shift for the position of the first absorbance peak studied by the derivative method. The results indicate the presence of quantum confinement effects. This conclusion is supported by theoretical calculations based on a combination of the effective mass theory and the Hartree Fock approximation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7761142 | PMC |
http://dx.doi.org/10.3390/nano10122379 | DOI Listing |
Chem Commun (Camb)
January 2025
CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, P. R. China.
Herein, an Ag@g-CN/MoS heterostructure is successfully synthesized for efficient solar-to-water oxidation. UV-vis DRS and steady-state PL analyses reveal the narrow band gap (2.10 eV) and efficient charge separation properties of the Ag nanoparticles and MoS, respectively.
View Article and Find Full Text PDFInt J Audiol
January 2025
Department of Audiology, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran.
Objective: Tinnitus and its pathophysiological mechanisms need more investigation because tinnitus may change the typical processing of sounds in the auditory system. Poor temporal resolution, which is not assessed with conventional subjective tinnitus evaluations, has been reported in some tinnitus sufferers.
Design: This study used a gap-in-noise paradigm to assess temporal resolution in tinnitus sufferers using both behavioural and electrophysiologic methods.
J Am Chem Soc
January 2025
Nanotech@surfaces Laboratory, Empa - Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland.
Polyacene analogues, consisting of short acene segments separated by nonbenzenoid rings, offer intriguing electronic properties and magnetic interactions. Pentalene-bridged polyacenes (PPs), in particular, hold promise for enhancing the electrical conductivity and potential open-shell ground states. However, PPs have remained elusive in solution chemistry due to poor solubility and limited synthetic protocols.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Physics, University of Michigan, Ann Arbor, MI, USA.
Excitons, bound electron-hole pairs, influence the optical properties in strongly interacting solid-state systems and are typically most stable and pronounced in monolayer materials. Bulk systems with large exciton binding energies, on the other hand, are rare and the mechanisms driving their stability are still relatively unexplored. Here, we report an exceptionally large exciton binding energy in single crystals of the bulk van der Waals antiferromagnet CrSBr.
View Article and Find Full Text PDFNanotechnology
January 2025
Department of Physics, University of Alberta, 4-181 CCIS, University of Alberta, Edmonton, Alberta, T6G 2R3, CANADA.
Bare silicon dimers on hydrogen-terminated Si(100) have two dangling bonds. These are atomically localized regions of high state density near to and within the bulk silicon band gap. We studied bare silicon dimers as monomeric units.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!