A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Structured layer surface segmentation for retina OCT using fully convolutional regression networks. | LitMetric

Structured layer surface segmentation for retina OCT using fully convolutional regression networks.

Med Image Anal

Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Department of Computer Science, The Johns Hopkins University, Baltimore, MD 21218, USA.

Published: February 2021

Optical coherence tomography (OCT) is a noninvasive imaging modality with micrometer resolution which has been widely used for scanning the retina. Retinal layers are important biomarkers for many diseases. Accurate automated algorithms for segmenting smooth continuous layer surfaces with correct hierarchy (topology) are important for automated retinal thickness and surface shape analysis. State-of-the-art methods typically use a two step process. Firstly, a trained classifier is used to label each pixel into either background and layers or boundaries and non-boundaries. Secondly, the desired smooth surfaces with the correct topology are extracted by graph methods (e.g., graph cut). Data driven methods like deep networks have shown great ability for the pixel classification step, but to date have not been able to extract structured smooth continuous surfaces with topological constraints in the second step. In this paper, we combine these two steps into a unified deep learning framework by directly modeling the distribution of the surface positions. Smooth, continuous, and topologically correct surfaces are obtained in a single feed forward operation. The proposed method was evaluated on two publicly available data sets of healthy controls and subjects with either multiple sclerosis or diabetic macular edema, and is shown to achieve state-of-the art performance with sub-pixel accuracy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7855873PMC
http://dx.doi.org/10.1016/j.media.2020.101856DOI Listing

Publication Analysis

Top Keywords

smooth continuous
12
surfaces correct
8
structured layer
4
layer surface
4
surface segmentation
4
segmentation retina
4
retina oct
4
oct fully
4
fully convolutional
4
convolutional regression
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!