Interpretable deep learning systems for multi-class segmentation and classification of non-melanoma skin cancer.

Med Image Anal

Institute for Molecular Bioscience, University of Queensland, 306 Carmody Road, St Lucia, Australia. Electronic address:

Published: February 2021

We apply for the first-time interpretable deep learning methods simultaneously to the most common skin cancers (basal cell carcinoma, squamous cell carcinoma and intraepidermal carcinoma) in a histological setting. As these three cancer types constitute more than 90% of diagnoses, we demonstrate that the majority of dermatopathology work is amenable to automatic machine analysis. A major feature of this work is characterising the tissue by classifying it into 12 meaningful dermatological classes, including hair follicles, sweat glands as well as identifying the well-defined stratified layers of the skin. These provide highly interpretable outputs as the network is trained to represent the problem domain in the same way a pathologist would. While this enables a high accuracy of whole image classification (93.6-97.9%), by characterising the full context of the tissue we can also work towards performing routine pathologist tasks, for instance, orientating sections and automatically assessing and measuring surgical margins. This work seeks to inform ways in which future computer aided diagnosis systems could be applied usefully in a clinical setting with human interpretable outcomes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.media.2020.101915DOI Listing

Publication Analysis

Top Keywords

interpretable deep
8
deep learning
8
cell carcinoma
8
interpretable
4
learning systems
4
systems multi-class
4
multi-class segmentation
4
segmentation classification
4
classification non-melanoma
4
non-melanoma skin
4

Similar Publications

Background: Sexual well-being significantly impacts the overall quality of life for individuals with and without intellectual disabilities. Notably, parents play a pivotal role in influencing their children's sexual development, and their attitudes towards this topic are shaped by Chinese sociocultural values.

Methods: This study employed Interpretative phenomenological analysis to explore the experiences and attitudes of five individuals with intellectual disabilities and seven parents/caregivers regarding the sexual needs of their adult offspring with intellectual disabilities.

View Article and Find Full Text PDF

Integrating Model-Informed Drug Development With AI: A Synergistic Approach to Accelerating Pharmaceutical Innovation.

Clin Transl Sci

January 2025

Global Biometrics and Data Management, Pfizer Research and Development, New York, New York, USA.

The pharmaceutical industry constantly strives to improve drug development processes to reduce costs, increase efficiencies, and enhance therapeutic outcomes for patients. Model-Informed Drug Development (MIDD) uses mathematical models to simulate intricate processes involved in drug absorption, distribution, metabolism, and excretion, as well as pharmacokinetics and pharmacodynamics. Artificial intelligence (AI), encompassing techniques such as machine learning, deep learning, and Generative AI, offers powerful tools and algorithms to efficiently identify meaningful patterns, correlations, and drug-target interactions from big data, enabling more accurate predictions and novel hypothesis generation.

View Article and Find Full Text PDF

Soil colour is a key indicator of soil health and the associated properties. In agriculture, soil colour provides farmers and advises with a visual guide to interpret soil functions and performance. Munsell colour charts have been used to determine soil colour for many years, but the process is fallible, as it depends on the user's perception.

View Article and Find Full Text PDF

Improved Intelligent Condition Monitoring with Diagnostic Indicator Selection.

Sensors (Basel)

December 2024

Faculty of Mechanical Engineering and Robotics, AGH University of Krakow, 30-059, Krakow, Poland.

In this study, a predictive maintenance (PdM) system focused on feature selection for the detection and classification of simulated defects in wind turbine blades has been developed. Traditional PdM systems often rely on numerous, broadly chosen diagnostic indicators derived from vibration data, yet many of these features offer little added value and may even degrade model performance. General feature selection methods might not be suitable for PdM solutions, as information regarding observed faults is often misinterpreted or lost.

View Article and Find Full Text PDF

Airborne transient electromagnetic (ATEM) surveys provide a fast, flexible approach for identifying conductive metal deposits across a variety of intricate terrains. Nonetheless, the secondary electromagnetic response signals captured by ATEM systems frequently suffer from numerous noise interferences, which impede effective data processing and interpretation. Traditional denoising methods often fall short in addressing these complex noise backgrounds, leading to less-than-optimal signal extraction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!