The central nervous system (CNS), consisting of the brain, spinal cord, and retina, superintends to the acquisition, integration and processing of peripheral information to properly coordinate the activities of the whole body. Neurodegenerative and neurodevelopmental disorders, trauma, stroke, and brain tumors can dramatically affect CNS functions resulting in serious and life-long disabilities. Globally, the societal and economic burden associated with CNS disorders continues to grow with the ageing of the population thus demanding for more effective and definitive treatments. Despite the variety of clinically available therapeutic molecules, medical interventions on CNS disorders are mostly limited to treat symptoms rather than halting or reversing disease progression. This is attributed to the complexity of the underlying disease mechanisms as well as to the unique biological microenvironment. Given its central importance, multiple barriers, including the blood brain barrier and the blood cerebrospinal fluid barrier, protect the CNS from external agents. This limits the access of drug molecules to the CNS thus contributing to the modest therapeutic successes. Loco-regional therapies based on the deposition of thermoresponsive hydrogels loaded with therapeutic agents and cells are receiving much attention as an alternative and potentially more effective approach to manage CNS disorders. In this work, the current understanding and challenges in the design of thermoresponsive hydrogels for CNS therapy are reviewed. First, the biological barriers that hinder mass and drug transport to the CNS are described, highlighting the distinct features of each barrier. Then, the realization, characterization and biomedical application of natural and synthetic thermoresponsive hydrogels are critically presented. Advantages and limitations of each design and application are discussed with the objective of identifying general rules that could enhance the effective translation of thermoresponsive hydrogel-based therapies for the treatment of CNS disorders.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jconrel.2020.11.049 | DOI Listing |
Carbohydr Polym
March 2025
Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China. Electronic address:
In an effort to mitigate or reverse the pathological progression of early-stage osteonecrosis of the femoral head (ONFH), this study employed a promising strategy that involves the sustained delivery of osteogenic factors to augment core decompression, facilitated by the use of composite hydrogels. Specifically, a hydrogel was synthesized by blending chitosan, Pluronic F-127, and tripolyphosphate, utilizing both ionic bonding and copolymer micelle cross-linking techniques. This hydrogel demonstrated exceptional biocompatibility, temperature responsiveness, pH-dependent biodegradation, and controlled release properties.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia.
Orthopedic, maxillofacial, and complex dentoalveolar bone grafting procedures that require donor-site bone harvesting can be associated with post-surgical complications. There has been widespread adoption of exogenously sourced particulate bone graft materials (BGM) for bone regenerative procedures; however, the particulate nature of these materials may lead to compromised healing outcomes, mainly attributed to structural collapse of the BGM, prolonged tissue healing. In this study, a fully synthetic thermoresponsive hydrogel-based universal carrier matrix (TX) that forms flowable and shapable putties with different BGMs while spatially preserving the particles in a 3D scaffold at the implantation site is introduced.
View Article and Find Full Text PDFAdv Mater
January 2025
Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China.
Tumor vaccines that activate the autologous immune system to eliminate tumor cells represent a promising approach in cancer immunotherapy. However, challenges such as tumor heterogeneity, limited antigen selection, insufficient antigen presentation, and the slow onset of de novo immune responses have resulted in poor universality and suboptimal response rates. In contrast, pathogen-specific pre-existing immunity acquired through infection or vaccination, can rapidly generate a more potent and enduring immune response upon re-encounter with the same antigen.
View Article and Find Full Text PDFMacromol Rapid Commun
January 2025
Department of Biological and Bioenergy Chemical Engineering, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China.
Cephalopods such as squids, octopuses, and cuttlefishes can change their bodies' color to match the surrounding environments by contracting or expanding the sac just below the surface of the skin. Inspired by this mechanism, artificial cephalopod chromatophores which are prepared by thermoresponsive poly(N-isopropyl acrylamide)-based hydrogel films embedded with black, red, and yellow pigments are presented, they can swell and shrink under temperature stimuli, like the natural chromatophores. The artificial chromatophores embedded with cuttlefish ink are further used to fabricate artificial J.
View Article and Find Full Text PDFDrug Dev Ind Pharm
January 2025
Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India.
Objective: The present study aims to develop and evaluate the voriconazole-loaded thermoresponsive hydrogel using tools.
Methods: Poloxamer 407 and PEG 400 were selected as the components from studies for thermoresponsive hydrogel of voriconazole. The cohesive energy density (CED) and solubility parameters (SP) were calculated using Biovia Material Studio 2022 software to predict the polymer-polymer miscibility and drug-polymer miscibility.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!