Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Wounding and infection trigger a protective innate immune response that includes the production of antimicrobial peptides in the affected tissue as well as increased sleep. Little is known, however, how peripheral wounds or innate immunity signal to the nervous system to increase sleep. We found that, during C. elegans larval molting, an epidermal tolloid/bone morphogenic protein (BMP)-1-like protein called NAS-38 promotes sleep. NAS-38 is negatively regulated by its thrombospondin domain and acts through its astacin protease domain to activate p38 mitogen-activated protein (MAP)/PMK-1 kinase and transforming growth factor β (TGF-β)-SMAD/SMA-3-dependent innate immune pathways in the epidermis that cause STAT/STA-2 and SLC6 (solute carrier)/SNF-12-dependent expression of antimicrobial peptide (AMP) genes. We show that more than a dozen epidermal AMPs act as somnogens, signaling across tissues to promote sleep through the sleep-active RIS neuron. In the adult, epidermal injury activates innate immunity and turns up AMP production to trigger sleep, a process that requires epidermal growth factor receptor (EGFR) signaling that is known to promote sleep following cellular stress. We show for one AMP, neuropeptide-like protein (NLP)-29, that it acts through the neuropeptide receptor NPR-12 in locomotion-controlling neurons that are presynaptic to RIS and that depolarize this neuron to induce sleep. Sleep in turn increases the chance of surviving injury. Thus, we found a novel mechanism by which peripheral wounds signal to the nervous system to increase protective sleep. Such a cross-tissue somnogen-signaling function of AMPs might also boost sleep in other animals, including humans.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cub.2020.10.076 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!