Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Phosphorylation is among the most widely distributed mechanisms regulating the tunable structure and function of proteins in response to neuronal, hormonal and environmental signals. We demonstrate here that the low-voltage electrochemical reduction of histidine residues in reflectin A1, a protein that mediates the neuronal fine-tuning of colour reflected from skin cells for camouflage and communication in squids, acts as an surrogate for phosphorylation , driving the assembly previously shown to regulate its function. Using micro-drop voltammetry and a newly designed electrochemical cell integrated with an instrument measuring dynamic light scattering, we demonstrate selective reduction of the imidazolium side chains of histidine in monomers, oligopeptides and this complex protein in solution. The formal reduction potential of imidazolium proves readily distinguishable from those of hydronium and primary amines, allowing unequivocal confirmation of the direct and energetically selective deprotonation of histidine in the protein. The resulting 'electro-assembly' provides a new approach to probe, understand, and control the mechanisms that dynamically tune protein structure and function in normal physiology and disease. With its abilities to serve as a surrogate for phosphorylation and other mechanisms of charge neutralization, and to potentially isolate early intermediates in protein assembly, this method may be useful for analysing never-before-seen early intermediates in the phosphorylation-driven assembly of other proteins in normal physiology and disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7811580 | PMC |
http://dx.doi.org/10.1098/rsif.2020.0774 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!