This preliminary study investigates the differences between experimental periodontitis and peri-implantitis in a dog model, with a focus on the histopathology, inflammatory responses, and specific immunoregulatory activities driven by Th1/Th2-positive cells. Twelve dental implants were inserted into the edentulated posterior mandibles of 6 beagle dogs and were given 12 weeks for osseointegration. Experimental peri-implantitis and periodontitis (first mandible molar) were then induced using cotton-floss ligatures. Twelve weeks later, alveolar bones were quantitated by cone beam-computer tomography. Histopathologic analysis of the inflamed gingiva and periodontal tissues was performed by light microscopy, and the Th1/Th2 cell populations were investigated by flow cytometry. Peri-implantitis and periodontitis were both found to be associated with pronounced bone resorption effects, both to a similar degree vertically, but with a differential bone resorption pattern mesio-distally, and with a significantly higher and consistent bone resorption result in peri-implantitis, although with a higher variance of bone resorption in periodontitis. The histologic appearances of the inflammatory tissues were identical. The percentages of Th1/Th2 cells in the inflamed gingival tissues of both experimental peri-implantitis and periodontitis were also found to be similar. Experimental periodontitis and peri-implantitis in the dog model show essentially the same cellular pathology of inflammation. However, bone resorption was found to be significantly higher in peri-implantitis; the histopathologic changes in the periodontal tissues were similar in both groups but showed a higher interindividual variation in periodontitis and appeared more uniform in peri-implantitis. This preliminary study indicates that more focused experimental in vivo inflammation models need to be developed to better simulate the human pathology in the 2 different diseases and to have a valuable tool to investigate more specifically how novel treatments/prevention approaches may heal the differential adverse effects on bone tissue and on periodontium in periodontitis and in periimplantitis.

Download full-text PDF

Source
http://dx.doi.org/10.1563/aaid-joi-D-19-00362DOI Listing

Publication Analysis

Top Keywords

bone resorption
20
peri-implantitis periodontitis
16
experimental peri-implantitis
12
peri-implantitis
9
periodontitis
9
preliminary study
8
experimental periodontitis
8
periodontitis peri-implantitis
8
peri-implantitis dog
8
dog model
8

Similar Publications

Calcium supplementation before exercise attenuates the decrease in serum calcium and increase in PTH and bone resorption. This study investigated the effect of calcium supplementation on calcium and bone metabolism during load carriage in women. Forty-eight women completed two load carriage sessions (load carriage 1 n = 48; load carriage 2 n = 40) (12.

View Article and Find Full Text PDF

The bone is a highly dynamic organ that undergoes continuous remodeling through an intricate balance of bone formation and degradation. Hyperactivation of the bone-degrading cells, the osteoclasts (OCs), occurs in disease conditions and hormonal changes in females, resulting in osteoporosis, a disease characterized by altered microarchitecture of the bone tissue, and increased bone fragility. Thus, building robust assays to quantify OC resorptive activity to examine the molecular mechanisms underlying bone degradation is critical.

View Article and Find Full Text PDF

Background: Vascularized bone grafts (VBGs) are currently the main surgical option for the restoration of humeral bone defects particularly when defects are larger than 6 cm. Because it offers a strong, rapid blood supply, VBGs easily integrate into the recipient sites and undergo active resorption and remodeling into healthy bone through primary bone healing. Additionally, they support the recipient site's immune system in preventing and reducing infection.

View Article and Find Full Text PDF

Osteoporosis is a chronic disease distinguished by decreased bone density and degradation of bone microstructure, frequently linked with inflammation and oxidative stress, both of which contribute to the acceleration of bone resorption. The compound 5,7-Dihydroxy-4-methylcoumarin (D4M) present in Artemisia dracunculus exhibits significant antioxidant and anti-inflammatory properties. Nonetheless, the potential anti-osteoporotic effects of D4M, along with the molecular targets and mechanisms responsible for these effects, have not been studied.

View Article and Find Full Text PDF

Background: While stress shielding and adaptive bone changes around the humeral component are often observed after shoulder arthroplasty, the potential causative factors and clinical significance of these findings at mid-term follow-up have not been well elucidated. The purpose of this study was to investigate the frequency, patterns and clinical significance of radiographic findings around the humeral component of total shoulder arthroplasty (TSA) and hemiarthroplasty (HA) at minimum 4-year follow-up.

Methods: The 6-week and minimum 4-year radiographs of patients who underwent HA and TSA were evaluated for filling ratios, changes in the humeral bone surrounding the component, and component shift or subsidence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!