Detecting Food Fraud in Extra Virgin Olive Oil Using a Prototype Portable Hyphenated Photonics Sensor.

J AOAC Int

Wageningen Food Safety Research, P.O. Box 230, Wageningen, The Netherlands, 6700 AE.

Published: March 2021

Background: Current developments in portable photonic devices for fast authentication of extra virgin olive oil (EVOO) or EVOO with non-EVOO additions steer towards hyphenation of different optic technologies. The multiple spectra or so-called "fingerprints" of samples are then analyzed with multivariate statistics. For EVOO authentication, one-class classification (OCC) to identify "out-of-class" EVOO samples in combination with data-fusion is applicable.

Objective: Prospecting the application of a prototype photonic device ("PhasmaFood") which hyphenates visible, fluorescence, and near-infrared spectroscopy in combination with OCC modelling to classify EVOOs and discriminate them from other edible oils and adulterated EVOOs.

Method: EVOOs were adulterated by mixing in 10-50% (v/v) of refined and virgin olive oils, olive-pomace olive oils, and other common edible oils. Samples were analyzed by the hyphenated sensor. OCC, data-fusion, and decision thresholds were applied and optimized for two different scenarios.

Results: By high-level data-fusion of the classification results from the three spectral databases and several multivariate model vectors, a 100% correct classification of all pure edible oils using OCC in the first scenario was found. Reducing samples being falsely classified as EVOOs in a second scenario, 97% of EVOOs adulterated with non-EVOO olive oils were correctly identified and ones with other edible oils correctly classified at score of 91%.

Conclusions: Photonic sensor hyphenation in combination with high-level data fusion, OCC, and tuned decision thresholds delivers significantly better screening results for EVOO compared to individual sensor results.

Highlights: Hyphenated photonics and its data handling solutions applied to extra virgin olive oil authenticity testing was found to be promising.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8372135PMC
http://dx.doi.org/10.1093/jaoacint/qsaa099DOI Listing

Publication Analysis

Top Keywords

virgin olive
16
edible oils
16
extra virgin
12
olive oil
12
olive oils
12
hyphenated photonics
8
samples analyzed
8
evoos adulterated
8
decision thresholds
8
oils correctly
8

Similar Publications

Background/objectives: Dementia is not a single disease but an umbrella term that encompasses a range of symptoms, such as memory loss and cognitive impairments, which are severe enough to disrupt daily life. One of the most common forms of dementia is Alzheimer's Disease (AD), a complex neurodegenerative condition influenced by both genetic and environmental factors. Recent research has highlighted diet as a potential modifiable risk factor for AD.

View Article and Find Full Text PDF

The fast detection of Extra Virgin Olive Oil (EVOO) adulteration with poorer quality and lower price vegetable oils is important for the protection of consumers and the market of olive oil from fraudulent activities, the latter exhibiting an increasing trend worldwide during the last few years. In this work, two optical spectroscopic techniques, namely, Laser-Induced Breakdown Spectroscopy (LIBS) and UV-Vis-NIR absorption spectroscopy, are employed and are assessed for EVOO adulteration detection, using the same set of olive oil samples. In total, 184 samples were studied, including 40 EVOOs and 144 binary mixtures with pomace, soybean, corn, and sunflower oils, at various concentrations (ranging from 10 to 90% /).

View Article and Find Full Text PDF

Virgin avocado oil (VAO), treasured for its nutritional and sensory properties, is susceptible to oxidation. To improve its oxidative stability, the feasibility of enrichment with antioxidants from avocado or olive-processing by-products via ultrasound-assisted maceration was explored. Dried, milled avocado (AL), olive leaves (OL), or olive pomace (OP) were ultrasound-macerated with laboratory-extracted VAO at 5, 10, and 20% levels.

View Article and Find Full Text PDF

This study explores approaches to enhancing the biostability of extra virgin olive oil (EVOO) supplemented with olive fruit extract (OFE) enriched with hydroxytyrosol (HTyr). The investigation focuses on prolonged deep frying (DF) conditions at 170 °C and 210 °C, over durations ranging from 3 to 48 h, with the aim of improving sensorial attributes, polyphenolic content, and thermal oxidative stability. Parameters, such as acidity, peroxide value (PV), K, K, ΔK, phenolic compounds, and sensory attributes, were monitored.

View Article and Find Full Text PDF

This study investigates the presence of active olive polyphenol oxidase (OePPO) in freshly extracted extra virgin olive oil (EVOO) and its role in triggering enzymatic browning during EVOO storage. OePPO's presence in EVOO was validated through its distinct molecular weights observed in SDS-PAGE gels. The generation of quinones in EVOO was tracked spectrophotometrically over a storage period of one month, revealing browning reactions, particularly in the early days of storage, followed by a decline concurrent with water sedimentation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!