Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Carbon dioxide (CO2) attracts host-seeking adult mosquitoes; this fact is exploited for mosquito monitoring, which is important for evaluating the effects of mosquito-control operations. A field experiment was designed to explore the relationship between the CO2 flow rate and the trapping effect of BG traps. The aim was to select an appropriate flow rate for monitoring Aedes albopictus. Six sampling sites were selected for field experiments in Hangzhou city, Zhejiang Province, China. A total of six CO2 flow rates (0.00 L/min, 0.075 L/min, 0.15 L/min, 0.30 L/min, 0.60 L/min and 1.20 L/min) were tested to compare their effects on mosquito trapping. The catches were performed in six trapping periods between 15:30 and 18:30, and each catch period lasted 0.5 h. A total of 3068 adult mosquitoes were captured at six sampling sites in six days using BG traps (with BG-Sweetscent), among which 86.96% were Ae. albopictus. The total number of Ae. albopictus (males and females) captured at a flow rate of 0.00 L/min was significantly lower than the numbers captured at 0.075 L/min, 0.15 L/min, 0.30 L/min, 0.60 L/min and 1.20 L/min (P<0.001, P<0.001, P<0.001, P<0.001, and P<0.001 respectively). The total number of Ae. albopictus captured and the number of Ae. albopictus females captured increased with increasing CO2 flow and peaked at 0.3 L/min, above which these capture numbers did not increase significantly. In conclusion, the appropriate CO2 flow rate for monitoring Ae. albopictus with BG traps was 0.3 L/min.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7707600 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0243061 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!