Analysis of gene similarity not only can provide information on the understanding of the biological roles and functions of a gene, but may also reveal the relationships among various genes. In this paper, we introduce a novel idea of mining similar aspects from a gene information network, i.e., for a given gene pair, we want to know in which aspects (meta paths) they are most similar from the perspective of the gene information network. We defined a similarity metric based on the set of meta paths connecting the query genes in the gene information network and used the rank of similarity of a gene pair in a meta path set to measure the similarity significance in that aspect. A minimal set of gene meta paths where the query gene pair ranks the highest is a similar aspect, and the similar aspect of a query gene pair is far from trivial. We proposed a novel method, SCENARIO, to investigate minimal similar aspects. Our empirical study on the gene information network, constructed from six public gene-related databases, verified that our proposed method is effective, efficient, and useful.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TCBB.2020.3041559DOI Listing

Publication Analysis

Top Keywords

gene network
20
gene pair
16
gene
13
meta paths
12
mining aspects
8
aspects gene
8
gene similarity
8
query gene
8
similarity
5
network
5

Similar Publications

Biophysical constraints limit the specificity with which transcription factors (TFs) can target regulatory DNA. While individual nontarget binding events may be low affinity, the sheer number of such interactions could present a challenge for gene regulation by degrading its precision or possibly leading to an erroneous induction state. Chromatin can prevent nontarget binding by rendering DNA physically inaccessible to TFs, at the cost of energy-consuming remodeling orchestrated by pioneer factors (PFs).

View Article and Find Full Text PDF

Dissecting the cellular architecture and genetic circuitry of the soybean seed.

Proc Natl Acad Sci U S A

January 2025

Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616.

Seeds are complex structures composed of three regions, embryo, endosperm, and seed coat, with each further divided into subregions that consist of tissues, cell layers, and cell types. Although the seed is well characterized anatomically, much less is known about the genetic circuitry that dictates its spatial complexity. To address this issue, we profiled mRNAs from anatomically distinct seed subregions at several developmental stages.

View Article and Find Full Text PDF

The homo-dodecameric ring-shaped RNA binding attenuation protein (TRAP) from binds up to twelve tryptophan ligands (Trp) and becomes activated to bind a specific sequence in the 5' leader region of the operon mRNA, thereby downregulating biosynthesis of Trp. Thermodynamic measurements of Trp binding have revealed a range of cooperative behavior for different TRAP variants, even if the averaged apparent affinities for Trp have been found to be similar. Proximity between the ligand binding sites, and the ligand-coupled disorder-to-order transition has implicated nearest-neighbor interactions in cooperativity.

View Article and Find Full Text PDF

Mycobacterium abscessus is a rapidly growing nontuberculous mycobacterium that causes severe pulmonary infections. Recent studies indicate that ferroptosis may play a critical role in the pathogenesis of M. abscessus pulmonary disease.

View Article and Find Full Text PDF

Based on network pharmacology and molecular docking methods, this study explored its active compounds and confirmed its potential mechanism of action against Hand-foot skin reaction induced by tumor-targeted drugs. Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform and UniProt Database were used to obtain the active ingredients and target proteins of Spatholobi Caulis. All hand-foot skin reaction (HFSR)-related targets were obtained with the help of the Human Gene Database, Online Mendelian Inheritance in Humans (OMIM), DisGeNET and DrugBank databases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!