In this paper, we propose a retinex-based decomposition model for a hazy image and a novel end-to-end image dehazing network. In the model, the illumination of the hazy image is decomposed into natural illumination for the haze-free image and residual illumination caused by haze. Based on this model, we design a deep retinex dehazing network (RDN) to jointly estimate the residual illumination map and the haze-free image. Our RDN consists of a multiscale residual dense network for estimating the residual illumination map and a U-Net with channel and spatial attention mechanisms for image dehazing. The multiscale residual dense network can simultaneously capture global contextual information from small-scale receptive fields and local detailed information from large-scale receptive fields to precisely estimate the residual illumination map caused by haze. In the dehazing U-Net, we apply the channel and spatial attention mechanisms in the skip connection of the U-Net to achieve a trade-off between overdehazing and underdehazing by automatically adjusting the channel-wise and pixel-wise attention weights. Compared with scattering model-based networks, fully data-driven networks, and prior-based dehazing methods, our RDN can avoid the errors associated with the simplified scattering model and provide better generalization ability with no dependence on prior information. Extensive experiments show the superiority of the RDN to various state-of-the-art methods.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TIP.2020.3040075DOI Listing

Publication Analysis

Top Keywords

residual illumination
16
image dehazing
12
illumination map
12
deep retinex
8
hazy image
8
dehazing network
8
haze-free image
8
caused haze
8
estimate residual
8
multiscale residual
8

Similar Publications

Background: The Anopheles funestus group includes at least 11 sibling species, with Anopheles funestus Giles being the most studied and significant malaria vector. Other species, like Anopheles parensis, are understudied despite their potential role in transmission. This article provides insights into the biology and insecticide susceptibility of An.

View Article and Find Full Text PDF

The aim of the current investigation is to explore the novel application of pumpkin, papaya, and orange peels as growth substrates for microalgae cultivation, with the overarching goal of advancing a sustainable "Agro to Agro" biorefinery paradigm. The research evaluates the integration of waste management practices into microalgal production, optimizing growth parameters to maximize output. Optimal concentrations of 2.

View Article and Find Full Text PDF

Enhanced detection and Characterization of M-proteins in multiple myeloma patients using An Agilent AssayMAP Bravo liquid handling system coupled to an LC-QTOF.

Clin Biochem

December 2024

Department of Pathology and Laboratory Medicine, London Health Sciences Centre and St. Joseph's Health Care London, London, ON, Canada; Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.

Background: Mass spectrometry methods are emerging as tools to detect M-proteins in the serum of multiple myeloma patients with increased sensitivity and specificity compared to traditional electrophoretic methods.

Methods: A liquid handling system, the Agilent AssayMAP Bravo, with liquid chromatography high-resolution quadrupole-time-of-flight (LC-QTOF) mass spectrometry to analyze intact light chains was compared to immunofixation electrophoresis (IFE) for M-protein analysis. 210 patient serum samples were analyzed in a split sample comparison (LC-QTOF vs.

View Article and Find Full Text PDF

Effect of Bias Voltage on the Microstructure and Photoelectric Properties of W-Doped ZnO Films.

Nanomaterials (Basel)

December 2024

Guangdong Provincial Key Laboratory of Electronic Functional Materials and Devices, Huizhou University, Huizhou 516007, China.

W-doped ZnO (WZO) films were deposited on glass substrates by using RF magnetron sputtering at different substrate bias voltages, and the relationships between microstructure and optical and electrical properties were investigated. The results revealed that the deposition rate of WZO films first decreased from 8.8 to 7.

View Article and Find Full Text PDF

An NIR-II Two-Photon Excitable AIE Photosensitizer for Precise and Efficient Treatment of Orthotopic Small-Size Glioblastoma.

Adv Mater

December 2024

School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong (CUHK-Shenzhen), Shenzhen, Guangdong, 518172, P. R. China.

The existence of residual small-size tumors after surgery is a major factor contributing to the high recurrence rate of glioblastoma (GBM). Conventional adjuvant therapeutics involving both chemotherapy and radiotherapy usually exhibit unsatisfactory efficacy and severe side effects. Recently, two-photon photodynamic therapy (TP-PDT), especially excited by the second near-infrared (NIR-II) light, offers an unprecedented opportunity to address this challenge, attributed to its combinational merits of PDT and TP excitation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!