Reducing radiation dose in cardiac catheter-based X-ray procedures increases safety but also image noise and artifacts. Excessive noise and artifacts can compromise vital image information, which can affect clinical decision-making. Developing more effective X-ray denoising methodologies will be beneficial to both patients and healthcare professionals by allowing imaging at lower radiation dose without compromising image information. This paper proposes a framework based on a convolutional neural network (CNN), namely Ultra-Dense Denoising Network (UDDN), for low-dose X-ray image denoising. To promote feature extraction, we designed a novel residual block which establishes a solid correlation among multiple-path neural units via abundant cross connections in its representation enhancement section. Experiments on synthetic additive noise X-ray data show that the UDDN achieves statistically significant higher peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM) than other comparative methods. We enhanced the clinical adaptability of our framework by training using normally-distributed noise and tested on clinical data taken from procedures at St. Thomas' hospital in London. The performance was assessed by using local SNR and by clinical voting using ten cardiologists. The results show that the UDDN outperforms the other comparative methods and is a promising solution to this challenging but clinically impactful task.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TBME.2020.3041571 | DOI Listing |
Med Phys
February 2022
School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.
Purpose: Reducing X-ray dose increases safety in cardiac electrophysiology procedures but also increases image noise and artifacts which may affect the discernibility of devices and anatomical cues. Previous denoising methods based on convolutional neural networks (CNNs) have shown improvements in the quality of low-dose X-ray fluoroscopy images but may compromise clinically important details required by cardiologists.
Methods: In order to obtain denoised X-ray fluoroscopy images whilst preserving details, we propose a novel deep-learning-based denoising framework, namely edge-enhancement densenet (EEDN), in which an attention-awareness edge-enhancement module is designed to increase edge sharpness.
IEEE Trans Biomed Eng
September 2021
Reducing radiation dose in cardiac catheter-based X-ray procedures increases safety but also image noise and artifacts. Excessive noise and artifacts can compromise vital image information, which can affect clinical decision-making. Developing more effective X-ray denoising methodologies will be beneficial to both patients and healthcare professionals by allowing imaging at lower radiation dose without compromising image information.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!