Surgical mask is recommended by the World Health Organization for personal protection against disease transmission. However, most of the surgical masks on the market are disposable that cannot be self-sterilized for reuse. Thus, when confronting the global public health crisis, a severe shortage of mask resource is inevitable. In this paper, a novel low-cost electrothermal mask with excellent self-sterilization performance and portability is reported to overcome this shortage. First, a flexible, ventilated, and conductive cloth tape is patterned and adhered to the surface of a filter layer made of melt-blown nonwoven fabrics (MNF), which functions as interdigital electrodes. Then, a graphene layer with premier electric and thermal conductivity is coated onto the MNF. Operating under a low voltage of 3 V, the graphene-modified MNF (mod-MNF) can quickly generate large amounts of heat to achieve a high temperature above 80 °C, which can kill the majority of known viruses attached to the filter layer and the mask surface. Finally, the optimized graphene-modified masks based on the mod-MNF filter retain a relatively high particulate matter (PM) removal efficiency and a low-pressure drop. Moreover, the electrothermal masks can maintain almost the same PM removal efficiency over 10 times of electrifying, suggesting its outstanding reusability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.0c16754 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!