Human erythropoiesis is an exquisitely controlled multistep developmental process, and its dysregulation leads to numerous human diseases. Transcriptome and epigenome studies provided insights into system-wide regulation, but we currently lack a global mechanistic view on the dynamics of proteome and post-translational regulation coordinating erythroid maturation. We established a mass spectrometry (MS)-based proteomics workflow to quantify and dynamically track 7,400 proteins and 27,000 phosphorylation sites of five distinct maturation stages of in vitro reconstituted erythropoiesis of CD34 HSPCs. Our data reveal developmental regulation through drastic proteome remodeling across stages of erythroid maturation encompassing most protein classes. This includes various orchestrated changes in solute carriers indicating adjustments to altered metabolic requirements. To define the distinct proteome of each maturation stage, we developed a computational deconvolution approach which revealed stage-specific marker proteins. The dynamic phosphoproteomes combined with a kinome-targeted CRISPR/Cas9 screen uncovered coordinated networks of erythropoietic kinases and pinpointed downregulation of c-Kit/MAPK signaling axis as key driver of maturation. Our system-wide view establishes the functional dynamic of complex phosphosignaling networks and regulation through proteome remodeling in erythropoiesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7706838 | PMC |
http://dx.doi.org/10.15252/msb.20209813 | DOI Listing |
Nat Commun
December 2024
Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA.
Single-cell multiomics provides comprehensive insights into gene regulatory networks, cellular diversity, and temporal dynamics. Here, we introduce nanoSPLITS (nanodroplet SPlitting for Linked-multimodal Investigations of Trace Samples), an integrated platform that enables global profiling of the transcriptome and proteome from same single cells via RNA sequencing and mass spectrometry-based proteomics, respectively. Benchmarking of nanoSPLITS demonstrates high measurement precision with deep proteomic and transcriptomic profiling of single-cells.
View Article and Find Full Text PDFNPJ Syst Biol Appl
November 2024
Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98109, USA.
Phosphosignaling networks control cellular processes. We built kinase-mediated regulatory networks elicited by thrombin stimulation of brain endothelial cells using two computational strategies: Temporal Pathway Synthesizer (TPS), which uses phosphoproteomics data as input, and Temporally REsolved KInase Network Generation (TREKING), which uses kinase inhibitor screens. TPS and TREKING predicted overlapping barrier-regulatory kinases connected with unique network topology.
View Article and Find Full Text PDFMol Biochem Parasitol
December 2024
Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX 75390, United States; Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390, United States. Electronic address:
The Leishmania life cycle alternates between promastigotes, found in the sandfly, and amastigotes, found in mammals. When an infected sandfly bites a host, promastigotes are engulfed by phagocytes (i.e.
View Article and Find Full Text PDFPhosphosignaling networks control cellular processes. We built kinase-mediated regulatory networks elicited by thrombin stimulation of brain endothelial cells using two computational strategies: Temporal Pathway Synthesizer (TPS), which uses phosphoproetiomics data as input, and Temporally REsolved KInase Network Generation (TREKING), which uses kinase inhibitor screens. TPS and TREKING predicted overlapping barrier-regulatory kinases connected with unique network topology.
View Article and Find Full Text PDFMethods Mol Biol
July 2024
Fred Hutchinson Cancer Center, Seattle, WA, USA.
Targeted proteomics enables sensitive and specific quantification of proteins and post-translational modifications. By coupling peptide immunoaffinity enrichment with targeted mass spectrometry, we have developed the methodology for multiplexed quantification of proteins and phosphosites involved in the RAS/MAPK signaling network. The method uses anti-peptide antibodies to enrich analytes and heavy stable isotope-labeled internal standards, spiked in at known concentrations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!