We demonstrate a novel, to the best of our knowledge, magneto-optical effect that reveals itself in light intensity modulation without polarization rotation in the Faraday configuration. We design a photonic crystal with a magnetized optical cavity that supports bound states in the continuum (BICs), since it simultaneously provides the extended state (continuum) for TM polarization, and the bound (localized) state in the form of a cavity mode for TE-polarized light. Magnetization of the photonic crystal in the Faraday configuration results in efficient polarization conversion and trapping of the acquired TE components of the TM incident light inside the magnetized optical cavity. As a result, a BIC manifests itself as a significant magneto-optical modulation of transmitted light intensity, while its polarization is preserved. Therefore, the proposed structure is promising for magnetic control of light in various applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.404159 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!