The gyroid lattice is a metamaterial which allows chirality that is tunable by geometry. Gyroid lattices were made in chiral and nonchiral form by 3D printing. The chiral lattices exhibited nonclassical elastic effects including coupling between compressive stress and torsional deformation. Gyroid lattices can approach upper bounds on elastic modulus. Effective modulus is increased by distributed moments but is, for gyroid cylinders of sufficiently small radius, softened by a surface layer of incomplete cells. Such size dependence is similar to that in foams but is unlike most lattices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.125.205502 | DOI Listing |
Materials (Basel)
January 2025
Daegyung Technology Application Division, Korea Institute of Industrial Technology, Daegu-si 42994, Republic of Korea.
In semiconductor inspection equipment, a chuck used to hold a wafer is equipped with a cooling or heating system for temperature uniformity across the surface of the wafer. Surface temperature uniformity is important for increasing semiconductor inspection speed. Triply periodic minimal surfaces (TPMSs) are proposed to enhance temperature uniformity.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of Industrial Engineering, University of Trento, 38123 Trento, Italy.
The metastable β-Ti21S alloy exhibits a lower elastic modulus than Ti-6Al-4V ELI while maintaining high mechanical strength and ductility. To address stress shielding, this study explores the integration of lattice structures within prosthetics, which is made possible through additive manufacturing. Continuous adhesion between the implant and bone is essential; therefore, auxetic bow-tie structures with a negative Poisson's ratio are proposed for regions under tensile stress, while Triply Periodic Minimal Surface (TPMS) structures with a positive Poisson's ratio are recommended for areas under compressive stress.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
November 2024
School of Mechanical Engineering, University of Campinas - UNICAMP, Campinas, SP, Brazil. Electronic address:
Given the capability to produce parts with complex geometries, powder bed fusion using a laser beam (PBF-LB), one of several additive manufacturing techniques, is becoming increasingly prevalent in both research and industry. Advances in the development of biomedical lattice structures show a trend in the use of functional gradients for greater customization and adjustment of mechanical properties according to the demands. This study analyzed four biomedical potential lattice structures (regular and graded) manufactured using PBF-LB in Ti6Al4V alloy.
View Article and Find Full Text PDFJ Biomater Appl
December 2024
Department of Biomedical Engineering, Amirkabir University of Technology(Tehran Polytechnic), Tehran, Iran.
Fabricating scaffolds using three-dimensional (3D) printing is an emerging approach in tissue engineering (TE), where filaments with a controlled arrangement are printed. Using fused deposition modeling in bone replacement enables the simulation of bone structure. However, the microenvironment created by the scaffold must meet specific requirements.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
February 2025
Department of Materials Science and Engineering, Division of Biomedical Engineering, Uppsala University, Sweden; Additive Manufacturing for the Life Sciences Competence Centre (AM4Life), Uppsala University, 751 21, Uppsala, Sweden. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!