Gravity-driven flows of granular matter are involved in a wide variety of situations, ranging from industrial processes to geophysical phenomena, such as avalanches or landslides. These flows are characterized by the coexistence of solid and fluid phases, whose stability is directly related to the erosion and sedimentation occurring at the solid-fluid interface. To describe these mechanisms, we build a microscopic model involving friction, geometry, and a nonlocal cooperativity emerging from the propagation of collisions. This new picture enables us to obtain a detailed description of the exchanges between the fluid and solid phases. The model predicts a phase diagram including the limits of erosion and sedimentation, in quantitative agreement with experiments and discrete-element-method simulations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.125.208002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!