We demonstrate the Rydberg series of dark excitons, known as paraexcitons, up to the principal quantum number n=6 for the yellow exciton series in Cu_{2}O, using second harmonic generation. Each of these states is optically inactive to all orders, but their observation becomes possible by application of a magnetic field which leads to mixing with the quadrupole-allowed bright excitons, called orthoexcitons, of the same n. The dark parastates are generally located below the bright orthostates, whose energies are increased by the electron-hole exchange interaction, except for n=2, where this order is reversed. This inversion occurs due to band mixing, namely, of the 2S_{y,o} orthoexciton of the yellow series with the 1S_{g,o} orthoexciton of the green exciton series.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.125.207402 | DOI Listing |
Phys Rev Lett
December 2024
ITAMP, Center for Astrophysics | Harvard & Smithsonian, 60 Garden Street, Cambridge, Massachusetts 02138, USA.
We make absolute frequency measurements of Cs Rydberg transitions, |6S_{1/2},F=3⟩→|nS_{1/2}(n=23-90)⟩ and |nD_{3/2,5/2}(n=21-90)⟩, with an accuracy of less than 72 kHz. The quantum defect parameters for the measured Rydberg series are the most precise obtained to date. The quantum defect series is terminated at δ_{4}, showing that prior fits requiring higher order quantum defects reflect uncertainties in the observations.
View Article and Find Full Text PDFJ Phys Chem A
December 2024
Radboud University Nijmegen, Institute for Molecules and Materials, Heijendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
In molecular beam scattering experiments, an important technique for measuring product energy and angular distributions is velocity map imaging following photoionization of one or more scattered species. For studies with cold molecular beams, the ultimate resolution of such a study is often limited by the product detection process. When state-selective ionization detection is used, excess energy from the ionization step can transfer to kinetic energy in the target molecular ion-electron pair, resulting in measurable cation recoil.
View Article and Find Full Text PDFChaos
October 2024
Institut für Theoretische Physik I, Universität Stuttgart, 70550 Stuttgart, Germany.
When an electron in a semiconductor gets excited to the conduction band, the missing electron can be viewed as a positively charged particle, the hole. Due to the Coulomb interaction, electrons and holes can form a hydrogen-like bound state called the exciton. For cuprous oxide, a Rydberg series up to high principle quantum numbers has been observed by Kazimierczuk et al.
View Article and Find Full Text PDFJ Phys Chem Lett
October 2024
5th Institute of Physics, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany.
J Chem Phys
September 2024
Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA.
The high resolution Rydberg absorption spectrum of 2-butyne C4H6 recorded previously at the SOLEIL synchrotron facility has been interpreted using multichannel quantum defect theory (MQDT). The calculations are based on the continuum scattering calculations of Xu et al., J.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!