T cells, a key component in adaptive immunity, are central to many immunotherapeutic modalities aimed at treating various diseases including cancer, infectious diseases, and autoimmune disorders. The past decade has witnessed tremendous progress in immunotherapy, which aims at activation or suppression of the immune responses for disease treatments. Most strikingly, cancer immunotherapy has led to curative responses in a fraction of patients with relapsed or refractory cancers. However, extending those clinical benefits to a majority of cancer patients remains challenging. In order to improve both efficacy and safety of T cell-based immunotherapies, significant effort has been devoted to modulating biochemical signals to enhance T cell proliferation, effector functions, and longevity. Such strategies include discovery of new immune checkpoints, design of armored chimeric antigen receptor (CAR) T cells, and targeted delivery of stimulatory cytokines and so on.Despite the intense global research effort in developing novel cancer immunotherapies, a major dimension of the interactions between cancer and the immune system, its biomechanical aspect, has been largely underappreciated. Throughout their lifecycle, T cells constantly survey a multitude of organs and tissues and experience diverse biomechanical environments, such as shear force in the blood flow and a broad range of tissue stiffness. Furthermore, biomechanical properties of tissues or cells may be altered in disease and inflammation. Biomechanical cues, including both passive mechanical cues and active mechanical forces, have been shown to govern T cell development, activation, migration, differentiation, and effector functions. In other words, T cells can sense, respond to, and adapt to both passive mechanical cues and active mechanical forces.Biomechanical cues have been intensively studied at a fundamental level but are yet to be extensively incorporated in the design of immunotherapies. Nonetheless, the growing knowledge of T cell mechanobiology has formed the basis for the development of novel engineering strategies to mechanically modulate T cell immunity, a nascent field that we termed "mechanical immunoengineering". Mechanical immunoengineering exploits biomechanical cues (e.g., stiffness and external forces) to modulate T cell differentiation, proliferation, effector functions, etc., for diagnostic or therapeutic applications. It provides an additional dimension, complementary to traditional modulation of biochemical cues (e.g., antigen density and co-stimulatory signals), to tailor T cell immune responses and enhance therapeutic outcomes. For example, stiff antigen-presenting matrices have been shown to enhance T cell proliferation independently of the intensity of biochemical stimulatory signals. Current strategies of mechanical immunoengineering of T cells can be categorized into two major fields including passive mechanical cue-oriented and active force-oriented strategies. In this Account, we first present a brief overview of T cell mechanobiology. Next, we summarize recent advances in mechanical immunoengineering, discuss the roles of chemistry and material science in the development of these engineering strategies, and highlight potential therapeutic applications. Finally, we present our perspective on the future directions in mechanical immunoengineering and critical steps to translate mechanical immunoengineering strategies into therapeutic applications in the clinic.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.accounts.0c00486 | DOI Listing |
Adv Healthc Mater
January 2025
Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
Int J Surg
January 2025
Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
The immune response is modulated by a diverse array of signals within the tissue microenvironment, encompassing biochemical factors, mechanical forces, and pressures from adjacent tissues. Furthermore, the extracellular matrix and its constituents significantly influence the function of immune cells. In the case of carcinogenesis, changes in the biophysical properties of tissues can impact the mechanical signals received by immune cells, and these signals can be translated into biochemical signals through mechano-transduction pathways.
View Article and Find Full Text PDFJ Nanobiotechnology
October 2024
Department of Medical Ultrasound, Center of Minimally Invasive Treatment for Tumor, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P.R. China.
Preclinical studies demonstrating high cure rates with PD1/PD-L1 combinations have led to numerous clinical trials, but emerging results are disappointing. These combined immunotherapies are commonly employed for patients with refractory tumors following prior treatment with cytotoxic agents. Here, we uncovered that the post-chemotherapy tumor presents a unique mechanical microenvironment characterized by an altered extracellular matrix (ECM) elasticity and increased stiffness, which facilitate the development of aggressive tumor phenotypes and confer resistance to checkpoint blocking therapy.
View Article and Find Full Text PDFACS Nano
August 2024
Shanghai Skin Disease Hospital, the Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai 200092, China.
The mechanical properties of nanoparticles play a crucial role in regulating nanobiointeractions, influencing processes such as blood circulation, tumor accumulation/penetration, and internalization into cancer cells. Consequently, they have a significant impact on drug delivery and therapeutic efficacy. However, it remains unclear whether and how macrophages alter their biological function in response to nanoparticle elasticity.
View Article and Find Full Text PDFRegen Biomater
July 2024
Department of Orthopaedic Rehabilitation, Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning Province, 121000, P. R. China.
The treatment of peripheral neuropathy resulting from diabetes primarily emphasizes neurotrophic medications. However, a growing body of clinical studies indicates that neuroinflammation plays a significant role in the pathogenesis of neuropathic pain. This has spurred active exploration of treatment strategies leveraging nanomedicine for diseases, aiming for superior therapeutic outcomes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!