At present days osteosynthesis modalities for avian fracture management are inadequate. External coaptation is the most practiced method however, specialized clinics have started introducing intramedullary pinning, external skeletal fixation with tie-in-fixation for fracture immobilization. Magnesium (Mg) based biomaterials are trustable developments in the field of orthopedics compared to their permanent stainless steel counterparts concerning long term adverse reaction. Mg implants are becoming promising for their use as intramedullary accessories because they are bioresorbable with high strength-weight ratio and the similarities in density and elastic modulus to the natural bones. However, their severe biodegradation trait restricts frequent use as load-bearing orthopedic implants. In this study, the biocompatibility and biodegradability of Mg based intramedullary cylindrical spacers (2.4 mm diameter × 8 mm height) reinforced with 0, 5, 15 wt% of hydroxyapatite (HA, Ca (PO ) (OH) ) were evaluated in 18 Uttara-fowl birds. Clinical, radiological (from immediate postoperative days till 24th week), biochemical (first three postoperative weeks) and histopathological study of test bone were carried out to evaluate implant degradation and osteocompatibility. Biodegradation of Mg-3Zn/0HA and Mg-3Zn/15HA initiated a bit earlier at second week of implantation, while that of Mg-3Zn/5HA at 3-fourth week, and found biocompatible and biodegradable with no observable clinical and histopathological changes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbm.a.37138 | DOI Listing |
Int J Biol Macromol
December 2024
Institute for Complex Systems, National Research Council, Piazzale Aldo Moro 5, 00185 Rome, Italy; Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy. Electronic address:
Polyelectrolyte complexes (PECs), formed via the self-assembly of oppositely charged polysaccharides, are highly valued for their biocompatibility, biodegradability, and hydrophilicity, offering significant potential for biotechnological applications. However, the complex nature and lack of insight at a molecular level into polyelectrolytes conformation and aggregation often hinders the possibility of achieving an optimal control of PEC systems, limiting their practical applications. To address this problem, an in-depth investigation of PECs microscopic structural organization is required.
View Article and Find Full Text PDFDaru
December 2024
Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
Objective(s): Some forms of breast cancer such as triple-negative phenotype, are serious challenge because of high metastatic cases, high mortality and resistance to conventional therapy motivated the search for alternative treatment approaches. Nanomaterials are promising candidates and suitable alternatives for improving tumor and cancer cell treatments.
Materials And Methods: Biosynthesis of ZnO NPs by help of Berberis integerrima fruit extract, has been done.
Biomacromolecules
December 2024
School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China.
Persistent oxidative stress following bone defects significantly impedes the repair of bone tissue. Designing an antioxidative hydrogel with a suitable mechanical strength can help alter the local microenvironment and promote bone defect healing. In this work, α-lipoic acid (LA), a natural antioxidant small molecule, was chemically cross-linked with lipoic acid-functionalized poly(ethylene glycol) (PEG, = 6k or 10k) in sodium bicarbonate solution, to prepare LA-PEG hydrogels (LP, = 6k or 10k).
View Article and Find Full Text PDFJ Nanobiotechnology
December 2024
Key Laboratory of Special Environmental Medicine of Xinjiang, General Hospital of Xinjiang Military Command, No. 359, Youhao North Road, Urumqi, Xinjiang, China.
Objective: This study aims to elucidate the mechanisms by which nanovesicles (NVs) transport curcumin(CUR) across the blood-brain barrier to treat hypothalamic neural damage induced by heat stroke by regulating the expression of poly(c)-binding protein 2 (PCBP2).
Methods: Initially, NVs were prepared from macrophages using a continuous extrusion method. Subsequently, CUR was loaded into NVs using sonication, yielding engineered cell membrane Nanovesicles loaded with curcumin (NVs-CUR), which were characterized and subjected to in vitro and in vivo tracking analysis.
Biomed Eng Online
December 2024
ORTHOREBIRTH Co., Ltd., Yokohama, Japan.
Background: A biodegradable nonwoven fabric that can be used to extract adipose-derived stem cells (ADSCs) from adipose tissue slices was developed, which were cultured rapidly without enzymatic treatment. The extracted and cultured ADSCs remain on the nonwoven fabric and form a thick cell sheet. The aim was to use the thick cell sheet as a treatment by transplanting it into the living body.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!