A simple method of preparing amorphous nickel ferrite nanoparticles of about 5 nm diameter is described. These particles were characterized by dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM) and selected area electron diffraction (SAED). The nanoparticles were evaluated for their use as a magnetic material for immobilized metal affinity chromatography (IMAC). The ferrite nanoparticles bound to bovine serum albumin (BSA) and the binding fitted Langmuir isotherm model. A high capacity of 916 mg BSA/g dried nanoparticle was observed. Six proteins (Soybean trypsin inhibitor (STI), lactate dehydrogenase (LDH), papain, catalase, β-galactosidase and casein) were used and all were found to bind at >90% level (except papain which showed 84% binding). All the proteins except LDH and β-galactosidase could be eluted with 1 M imidazole and with % activity recovery of >80%. Papain could be purified from its dried crude latex by 5-fold and purified papain showed a single band on SDS-PAGE. These nanoparticles constitute a high capacity and are magnetic material useful for IMAC and do not require any pre-functionalization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/chromsci/bmaa102 | DOI Listing |
Anal Biochem
January 2025
Department of Studies and Research in Biochemistry, Tumkur University, Tumkur 572103, Karnataka, India. Electronic address:
Current study evaluates the beneficial role of bio-functionalized zinc ferrite nanoparticles fabricated from an aqueous extract of Decalepis hamiltonii leaves (DHLE.ZnFeO NPs) on sodium nitrite (NaNO) and Diclofenac (DFC) induced oxidative stress in RBCs and Sprague Dawley male rat models. DHLE.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
School of Engineering and Sciences, Tecnologico de Monterrey, Atizapan de Zaragoza C.P. 52926, Estado de Mexico, Mexico.
Currently, there is a rush to develop green polymeric films such as biodegradable chitosan (CH) films to control and prevent plastic pollution from degrading the environment. This study reports a novel and sustainable green approach to the development of CH films using lemon juice (LJ) and lemon peel extract (LPE), the latter to dilute the LJ. The LPE was also utilized for the synthesis of ZnFeO nanoparticles (NPs), adding to this work's novelty.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Tecnologico de Monterrey, School of Engineering and Sciences, Atizapan de Zaragoza C.P. 52926, Estado de Mexico, Mexico.
A trend has been established concerning the research and development of various green and biodegradable plastics for multi-purpose applications, aiming to replace petroleum-based plastics. Herein, we report the synthesis of chitosan (CH) films using lemon juice; these were reinforced with NiZnFeO nanoparticles (NiZnFeO NPs) to obtain improved mechanical and barrier properties, facilitating their future application as sustainable, corrosion-resistant coatings for medical instruments. The synthesized NiZnFeO NPs had a crystallite size of ~29 nm.
View Article and Find Full Text PDFDiscov Nano
January 2025
Physics Department/Faculty of Science, Sana'a University, Sana'a, Yemen.
Colloids Surf B Biointerfaces
December 2024
Department of Radiology, Chonnam National University Medical School, Chonnam National University Hwasun Hospital, Hwasun, South Korea. Electronic address:
Purpose: The aim of this study is to synthesize the cobalt iron oxide (CoFe) and doxorubicin (Dox)-loaded chitosan bilirubin (ChiBil) nanoparticles and to investigate the anticancer therapeutic effect of the synthesized nanoparticles under magnetic guidance in a colon cancer.
Materials And Methods: ChiBil-CoFe-Dox nanoparticles were synthesized by conjugating CoFe and Dox and then loaded onto ChiBil nanoparticles. Synthesis were characterized using thermogravimetric (TGA) analysis, inductive coupled plasma (ICP) analysis, dynamic light scattering (DLS), zeta potential and field emission-transmission electron microscopy (FE-TEM).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!