The development of novel, non-invasive techniques and standardization of protocols to assess microvascular dysfunction have elucidated the key role of microvascular changes in the evolution of cardiovascular (CV) damage, and their capacity to predict an increased risk of adverse events. These technical advances parallel with the development of novel biological assays that enabled the ex vivo identification of pathways promoting microvascular dysfunction, providing novel potential treatment targets for preventing cerebral-CV disease. In this article, we provide an update of diagnostic testing strategies to detect and characterize microvascular dysfunction and suggestions on how to standardize and maximize the information obtained from each microvascular assay. We examine emerging data highlighting the significance of microvascular dysfunction in the development CV disease manifestations. Finally, we summarize the pathophysiology of microvascular dysfunction emphasizing the role of oxidative stress and its regulation by epigenetic mechanisms, which might represent potential targets for novel interventions beyond conventional approaches, representing a new frontier in CV disease reduction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8266605PMC
http://dx.doi.org/10.1093/eurheartj/ehaa857DOI Listing

Publication Analysis

Top Keywords

microvascular dysfunction
20
microvascular
8
pathophysiology microvascular
8
development novel
8
dysfunction
5
assessment pathophysiology
4
disease
4
microvascular disease
4
disease progress
4
progress clinical
4

Similar Publications

This case report describes the clinical course of a 78-year-old patient diagnosed with polycythemia vera (PV), who presented with pronounced acrocyanosis of the hands in 2021. The patient was treated with hydroxyurea (oncocarbide), and nailfold capillaroscopy revealed an "abnormal pattern" characterized by pronounced architectural disarray and capillary tortuosity, which is uncommon in patients with myeloproliferative neoplasms (MPNs). In 2023, owing to suboptimal symptom management and hematological side effects, the treatment was switched to ruxolitinib, which led to significant clinical improvements by 2024, including near-complete resolution of acrocyanosis and substantial improvement in capillaroscopic abnormalities, with only residual capillary tortuosity noted.

View Article and Find Full Text PDF

Purpose Of Review: What is the pathophysiology and clinical findings as well as management of patients presenting with INOCA/MINOCA (Ischemia/Myocardial Infarction with Non-Obstructive Coronary Arteries).

Recent Findings: INOCA/MINOCA has a complex pathophysiology. In this review article, we aim to summarize the complex pathophysiology and clinical diagnosis, and review the current management options.

View Article and Find Full Text PDF

High Glucose Treatment Induces Nuclei Aggregation of Microvascular Endothelial Cells via the - Pathway.

Arterioscler Thromb Vasc Biol

January 2025

Research Center of Clinical Medicine, Affiliated Hospital, Nantong University, China. (X.W., D.L.).

Background: Hyperglycemia is a major contributor to endothelial dysfunction and blood vessel damage, leading to severe diabetic microvascular complications. Despite the growing body of research on the underlying mechanisms of endothelial cell (EC) dysfunction, the available drugs based on current knowledge fall short of effectively alleviating these complications. Therefore, our endeavor to explore novel insights into the cellular and molecular mechanisms of endothelial dysfunction is crucial for the field.

View Article and Find Full Text PDF

The Impact of Epigenetics on the Pathophysiology of Type 2 Diabetes and Associated Nephropathic Complications.

Indian J Endocrinol Metab

December 2024

Rajiv Gandhi Centre for Diabetes and Endocrinology, J N Medical College and Hospital, Aligarh Muslim University, Aligarh, Uttar Pradesh, India.

Type 2 diabetes (T2D) is a long-term metabolic condition that presents considerable health challenges globally. As the disease progresses, the interplay between genetic, environmental, and lifestyle factors becomes increasingly evident, leading to complications. Epigenetics has emerged as a critical area of research, providing insights into how these factors can modify the expression and cellular behavior without altering the underlying DNA sequence.

View Article and Find Full Text PDF

Non-atherosclerotic coronary causes of myocardial infarction in women.

Prog Cardiovasc Dis

January 2025

Section of Interventional Cardiology, MedStar Washington Hospital Center, Washington, DC, United States. Electronic address:

Ischemic heart disease is the most common cardiovascular cause of death in women worldwide. Obstructive coronary atherosclerosis is the primary cause of myocardial infarction (MI), however, non-atherosclerotic mechanisms of MI, such as spontaneous coronary artery dissection, vasospasm, microvascular dysfunction, embolization, inflammation, coronary anomalies, infectious and infiltrative causes are increasingly being recognized. Emerging data suggest that women are two to five times more likely to have an MI in the absence of coronary atherosclerosis compared to men, but they continue to remain underdiagnosed and undertreated, partly due to underdiagnosis and limited understanding of these mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!