Bromodomain (BRD)-containing proteins are important for chromatin remodeling to regulate gene expression. In this study, we found that the deubiquitinase USP24 interacted with BRD through its C-terminus increased the levels of most BRD-containing proteins through increasing their protein stability by the removal of ubiquitin from Lys391/Lys400 of the BRD. In addition, we found that USP24 and BRG1 could regulate each other through regulating the protein stability and the transcriptional activity, respectively, of the other, suggesting that the levels of USP24 and BRG1 are regulated to form a positive feedback loop in cancer progression. Loss of the interaction motif of USP24 eliminated the ability of USP24 to stabilize BRD-containing proteins and abolished the effect of USP24 on cancer progression, including its inhibition of cancer cell proliferation and promotion of cancer cell migration, suggesting that the interaction between USP24 and the BRD is important for USP24-mediated effects on cancer progression. The targeting of BRD-containing proteins has been developed as a strategy for cancer therapy. Based on our study, targeting USP24 to inhibit the levels of BRD-containing proteins may inhibit cancer progression.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7705756 | PMC |
http://dx.doi.org/10.1038/s41598-020-78000-2 | DOI Listing |
Neoplasia
November 2024
Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA; O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Biomedical Informatics and Data Science, University of Alabama at Birmingham, Birmingham, AL, USA. Electronic address:
Reprod Sci
January 2025
Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave, Chicago, IL, 60637, USA.
Bromodomain (BRD)-containing proteins are evolutionarily conserved protein-protein interaction modules involved in many biological processes. BRDs selectively recognize and bind to acetylated lysine residues, particularly in histones, and thereby have a crucial role in the regulation of gene expression. BRD protein dysfunction has been linked to many diseases, including tumorigenesis.
View Article and Find Full Text PDFEur J Med Chem
March 2024
Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China. Electronic address:
Epigenetic modifications play crucial roles in physiological processes, including cell differentiation, proliferation, and death. Bromodomain/Brd-containing proteins (BCPs) regulate abnormal gene expression in various diseases by recognizing the lysine-ε-N-acetylated residues (KAc) or by acting as transcriptional co-activators. Small molecule inhibitors targeting BCPs offer an attractive strategy for modulating aberrant gene expression.
View Article and Find Full Text PDFInt J Mol Sci
January 2024
Centre for Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK.
Pancreatic ductal adenocarcinoma (PDAC) is the most aggressive type of pancreatic cancer, which rapidly develops resistance to the current standard of care. Several oncolytic Human AdenoViruses (HAdVs) have been reported to re-sensitize drug-resistant cancer cells and in combination with chemotherapeutics attenuate solid tumour growth. Obstacles preventing greater clinical success are rapid hepatic elimination and limited viral replication and spread within the tumour microenvironment.
View Article and Find Full Text PDFJ Med Chem
December 2023
Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
Schistosomiasis is a disease affecting >200 million people worldwide, but its treatment relies on a single agent, praziquantel. To investigate new avenues for schistosomiasis control, we have conducted the first systematic analysis of bromodomain-containing proteins (BCPs) in a causative species, . Having identified 29 putative bromodomains (BRDs) in 22 proteins, we selected BRD3, a tandem BRD-containing BCP that shows high similarity to the human bromodomain and extra terminal domain (BET) family, for further studies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!