Pathogens able to cross the blood-brain barrier (BBB) induce long-term neurological sequelae and death. Understanding how neurotropic pathogens bypass this strong physiological barrier is a prerequisite to devise therapeutic strategies. Here we propose an innovative model of infection in the developing Drosophila brain, combining whole brain explants with in vivo systemic infection. We find that several mammalian pathogens are able to cross the Drosophila BBB, including Group B Streptococcus (GBS). Amongst GBS surface components, lipoproteins, and in particular the B leucine-rich Blr, are important for BBB crossing and virulence in Drosophila. Further, we identify (V)LDL receptor LpR2, expressed in the BBB, as a host receptor for Blr, allowing GBS translocation through endocytosis. Finally, we show that Blr is required for BBB crossing and pathogenicity in a murine model of infection. Our results demonstrate the potential of Drosophila for studying BBB crossing by pathogens and identify a new mechanism by which pathogens exploit the machinery of host barriers to generate brain infection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7704634 | PMC |
http://dx.doi.org/10.1038/s41467-020-19826-2 | DOI Listing |
Biopharm Drug Dispos
March 2025
Department of Pharmaceutical Sciences, Biopharmacy, University of Basel, Basel, Switzerland.
Sulfated steroids such as pregnenolone sulfate (PregS) are important for neuronal development and cognitive functions. Given the hydrophilic sulfate moiety, it is assumed that PregS requires an active transport mechanism to cross the blood-brain barrier (BBB). The human organic anion transporting polypeptide (OATP)2B1 has been previously shown to transport sulfated steroids and is therefore a proposed candidate for the transport of PregS.
View Article and Find Full Text PDFJ Nanobiotechnology
March 2025
Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
Mitochondria are pivotal in sustaining oxidative balance and metabolic activity within neurons. It is well-established that mitochondrial dysfunction constitutes a fundamental pathogenic mechanism in neurodegeneration, especially in the context of Parkinson's disease (PD), this represents a promising target for therapeutic intervention. Ursodeoxycholic acid (UDCA), a clinical drug used for liver disease, possesses antioxidant and mitochondrial repair properties.
View Article and Find Full Text PDFMetab Brain Dis
March 2025
Social Determinants of Health Research Center, Health Management and Safety Promotion, Tabriz, Iran.
Neurodegenerative diseases (NDDs) are characterized by the chronic and progressive deterioration of the structure and function of the nervous system, imposing a significant burden on patients, their families, and society. These diseases have a gradual onset and continually worsen, making early diagnosis challenging. Current drugs on the market struggle to effectively cross the blood-brain barrier (BBB), leading to poor outcomes and limited therapeutic success.
View Article and Find Full Text PDFIran J Pharm Res
November 2024
Department of Pharmaceutics, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran.
The inefficiency of some medications to cross the blood-brain barrier (BBB) is often attributed to their poor physicochemical or pharmacokinetic properties. Recent studies have demonstrated promising outcomes using machine learning algorithms to predict drug permeability across the BBB. In light of these findings, our study was conducted to explore the potential of machine learning in predicting the permeability of drugs across the BBB.
View Article and Find Full Text PDFNat Commun
March 2025
Engineering Research Center of Coptis Development & Utilization, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China.
Lipid nanoparticles have shown success in targeting major organs such as the liver, spleen, and lungs, but crossing the blood-brain barrier (BBB) remains a major challenge. Effective brain-targeted delivery systems are essential for advancing gene therapy for neurological diseases but remain limited by low transport efficiency and poor nucleic acid stability. Here, we report a library of ionizable lipids based on the tetrahydroisoquinoline structure of protoberberine alkaloids, designed to improve BBB penetration via dopamine D3 receptor-mediated endocytosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!