Purpose: Our aim was to determine the cost-effectiveness of two intracranial electroencephalography (iEEG) interventions: 1) stereoelectroencephalography (SEEG) and 2) placement of subdural grid electrodes (SDGs) both followed by resective surgery in patients with drug-resistant, partial-onset epilepsy, compared with medical management (MM) in Hungary from payer's perspective.
Methods: The incremental health gains and costs of iEEG interventions have been determined with a combination of a decision tree and prevalence Markov process model over a 30-year time horizon in a cost-utility analysis (CUA). To address the effect of parameter uncertainty on the incremental cost-effectiveness ratio (ICER), deterministic and probabilistic sensitivity analyses were performed.
Results: Our results showed that both SEEG and SDG interventions represent a more expensive but more effective strategy than MM representing the current standard of care. The total discounted cost of SEEG and SDG were € 32,760 and € 25,028 representing € 18,108 and € 10,375 additional cost compared with MM, respectively. However, they provide an additional 3.931 (in SEEG group) and 3.444 quality-adjusted life years (QALYs; in SDG group), correspondingly. Thus, the ICER of SEEG is € 4607 per QALY gain, while the ICER for SDG is € 3013 per QALY gain, compared with MM. At a cost-effectiveness threshold of € 41,058 per QALY in Hungary, both subtypes of iEEG interventions are cost-effective and provide good value for money.
Significance: Because of the high cost of implanting electrodes and monitoring, the invasive EEG for patients with refractory epilepsy is currently not available in the Hungarian national healthcare system. Our study demonstrated that these procedures in Hungary are cost-effective compared with the MM. As a result, the introduction of iEEG interventions to the reimbursement list of the National Health Insurance Fund Administration was initiated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.yebeh.2020.107488 | DOI Listing |
Epilepsia
January 2025
Department of Neurology, The University of Alabama at Birmingham, Birmingham, Alabama, USA.
Objective: Temporal encephaloceles (TEs) are seen in patients with drug-resistant epilepsy (DRE); yet they are also common incidental findings. Variability in institutional pre-surgical epilepsy practices and interpretation of epileptogenic network localization contributes to bias in existing epilepsy cohorts with TE, and therefore the relevance of TE in DRE remains controversial. We sought to estimate effect sizes and sample sizes necessary to demonstrate clinically relevant improvements in seizure outcome with different surgical approaches.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 02-093 Warsaw, Poland.
The precise localization of epileptic foci with the help of EEG or iEEG signals is still a clinical challenge with current methodology, especially if the foci are not close to individual electrodes. On the research side, dipole reconstruction for focus localization is a topic of recent and current developments. Relatively low numbers of recording electrodes cause ill-posed and ill-conditioned problems in the inversion of lead-field matrices to calculate the focus location.
View Article and Find Full Text PDFNeurophysiol Clin
January 2025
Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China. Electronic address:
Objectives: In the present study with a large cohort, we aimed to characterize intracerebral seizure onset patterns (SOP) of mesial temporal lobe epilepsy (mTLE), with or without hippocampal sclerosis (HS) as identified via magnetic resonance imaging (MRI).
Methods: We retrospectively analyzed 255 seizures of 76 consecutive patients with mTLE explored by stereoelectroencephalography (SEEG), including HS-mTLE (n = 52) and non-HS- mTLE (n = 24). Relevant results were obtained by a combination of spectral analysis and manual review.
Front Neuroimaging
December 2024
Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
Epilepsia
December 2024
Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.
Objective: The most common medically resistant epilepsy (MRE) involves the temporal lobe (TLE), and children designated as temporal plus epilepsy (TLE+) have a five-times increased risk of postoperative surgical failure. This retrospective, blinded, cross-sectional study aimed to correlate visual and computational analyses of magnetoencephalography (MEG) virtual sensor waveforms with surgical outcome and epilepsy classification (TLE and TLE+).
Methods: Patients with MRE who underwent MEG and iEEG monitoring and had at least 1 year of postsurgical follow-up were included in this retrospective analysis.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!