A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Nano chitosan-zinc complex improves the growth performance and antioxidant capacity of the small intestine in weaned piglets. | LitMetric

Nano chitosan-zinc complex improves the growth performance and antioxidant capacity of the small intestine in weaned piglets.

Br J Nutr

Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing210095, People's Republic of China.

Published: September 2021

AI Article Synopsis

  • The study tested if a nano chitosan-zinc complex (CP-Zn) could reduce weaning stress in piglets affected by E. coli, focusing on growth and intestinal health.
  • Results showed that CP-Zn improved growth metrics like daily gain and feed intake, enhanced digestive enzyme activity, and increased nutrient transporter expression in the piglets' intestines.
  • Additionally, CP-Zn boosted antioxidant capacity by raising glutathione levels and the activity of protective enzymes while lowering harmful substances in both piglets and cultured cells.

Article Abstract

The present study was conducted to test the hypothesis that dietary supplementation with a nano chitosan-zinc complex (CP-Zn, 100 mg/kg Zn) could alleviate weaning stress in piglets challenged with enterotoxigenic Escherichia coli K88 by improving growth performance and intestinal antioxidant capacity. The in vivo effects of CP-Zn on growth performance variables (including gastrointestinal digestion and absorption functions and the levels of key proteins related to muscle growth) and the antioxidant capacity of the small intestine (SI) were evaluated in seventy-two weaned piglets. The porcine jejunal epithelial cell line IPEC-J2 was used to further investigate the antioxidant mechanism of CP-Zn in vitro. The results showed that CP-Zn supplementation increased the jejunal villus height and decreased the diarrhoea rate in weaned piglets. CP-Zn supplementation also improved growth performance (average daily gain and average daily feed intake), increased the activity of carbohydrate digestion-related enzymes (amylase, maltase, sucrase and lactase) and the mRNA expression levels of nutrient transporters (Na+-dependent glucose transporter 1, glucose transporter type 2, peptide transporter 1 and excitatory amino acid carrier 1) in the jejunum and up-regulated the expression levels of mammalian target of rapamycin (mTOR) pathway-related proteins (insulin receptor substrate 1, phospho-mTOR and phospho-p70S6K) in muscle. In addition, CP-Zn supplementation increased glutathione content, enhanced total superoxide dismutase (T-SOD) and glutathione peroxidase (GSH-px) activity, and reduced malondialdehyde (MDA) content in the jejunum. Furthermore, CP-Zn decreased the content of MDA and reactive oxygen species, enhanced the activity of T-SOD and GSH-px and up-regulated the expression levels of nuclear factor erythroid 2-related factor 2 (Nrf2) pathway-related proteins (Nrf2, NAD(P)H:quinone oxidoreductase 1 and haeme oxygenase 1) in lipopolysaccharide-stimulated IPEC-J2 cells. Collectively, these findings indicate that CP-Zn supplementation can improve growth performance and the antioxidant capacity of the SI in piglets, thus alleviating weaning stress.

Download full-text PDF

Source
http://dx.doi.org/10.1017/S0007114520004766DOI Listing

Publication Analysis

Top Keywords

growth performance
20
antioxidant capacity
16
cp-zn supplementation
16
weaned piglets
12
expression levels
12
nano chitosan-zinc
8
chitosan-zinc complex
8
performance antioxidant
8
capacity small
8
small intestine
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!