Background: Pedicle screw fixation is a well-established technique for thoracolumbar fracture. A large number of studies have shown that the bending angle of the connecting rod has a significant correlation with the postoperative spinal stability. However, no studies have confirmed an objective indicator to guide the bending angle of the connecting rod during the operation. Our study aims to define a sagittal Cobb* angle to guide the bending angle of the connecting rod during surgery.

Methods: The frontal and lateral X-ray films in 150 cases of normal thoracolumbar spine were included to measure the normal spinal sagittal Cobb* angle in each segment. The patients who underwent single segment thoracolumbar fractures and pedicle screw internal fixation surgery were included. The radiological parameters included lumbar lordosis (LL), thoracic kyphosis (TK), pelvic tilt (PT), pelvic incidence (PI), sagittal vertical axis (SVA), and sacral slope (SS) were measured. The incidence of adjacent segment degeneration (ASD) 2 years after surgery was measured.

Results: The average values of normal sagittal Cobb* angle in each segment were - 5.196 ± 3.318° (T12), 2.279 ± 3.324° (L1), 7.222 ± 2.798° (L2), and 12.417 ± 11.962° (L3), respectively. The LL in the three groups was 35.20 ± 9.12°, 46.26 ± 9.68°, and 54.24 ± 15.31°, respectively. Compared with the normal group, there were significant differences in group A and group C, respectively (p < 0.05). The results were similar in the parameters of TL, PT, and SS. The incidences of SVA > 50 mm in group A, group B, and group C were 23.33%, 12.50%, and 19.23%, respectively. The parameter of PI in three groups was 41.36 ± 12.69, 44.53 ± 15.27, and 43.38 ± 9.85°, respectively. The incidences of ASD in group A, group B, and group C 2 years after surgery were 21.67%, 13.75%, and 17.95%, respectively.

Conclusions: The study confirmed that the sagittal Cobb* angle can be used as a reference angle for bending rods. When the bending angle of the connecting rod is 4 to 8° greater than the corresponding segment sagittal Cobb* angle, the patient's spinal sagittal stability is the best 2 years after the operation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7708173PMC
http://dx.doi.org/10.1186/s13018-020-02115-5DOI Listing

Publication Analysis

Top Keywords

sagittal cobb*
24
cobb* angle
24
group group
20
bending angle
16
angle connecting
16
connecting rod
16
angle
11
group
9
sagittal
8
angle guide
8

Similar Publications

Background: Prone lateral spinal surgery for simultaneous lateral and posterior approaches has recently been proposed to facilitate surgical room efficiency. The purpose of this study is to evaluate the feasibility and outcomes of minimally invasive prone lateral spinal surgery using a rotatable radiolucent Jackson table.

Methods: From July 2021 to June 2023, a consecutive series of patients who received minimally invasive prone lateral spinal surgery for various etiologies by the same surgical team were reviewed.

View Article and Find Full Text PDF

Background: Vertebral body tethering (VBT) has shown improvements in coronal and sagittal plane correction in adolescent idiopathic scoliosis (AIS) patients, but axial correction over time remains unexplored. Three-dimensional (3D) spine reconstruction was used to analyse correctional changes in all spinal planes post VBT surgery.

Case Description: AIS subjects who underwent thoracic VBT surgery with a minimum 2-year follow-up were assessed.

View Article and Find Full Text PDF

Machine learning analysis of cervical balance in early-onset scoliosis post-growing rod surgery: a case-control study.

Sci Rep

January 2025

Department of Orthopedic Surgery, Beijing Chao-Yang Hospital, Capital Medical University, GongTiNanLu 8#, Chaoyang District, Beijing, 100020, China.

We aimed to analyze the cervical sagittal alignment change following the growing rod treatment in early-onset scoliosis (EOS) and identify the risk factors of sagittal cervical imbalance after growing-rod surgery of machine learning. EOS patients from our centre between 2007 and 2019 were retrospectively reviewed. Radiographic parameters include the cervical lordosis (CL), T1 slope, C2-C7 sagittal vertical axis (C2-7 SVA), primary curve Cobb angle, thoracic kyphosis (TK), C7-S1 sagittal vertical axis (C7-S1 SVA) and proximal junctional angle (PJA) were evaluated preoperatively, postoperatively and at the final follow-up.

View Article and Find Full Text PDF

Background: An accurate knowledge of a patient's risk of cord-level intraoperative neuromonitoring (IONM) data loss is important for an informed decision-making process prior to deformity correction, but no prediction tool currently exists.

Methods: A total of 1,106 patients with spinal deformity and 205 perioperative variables were included. A stepwise machine-learning (ML) approach using random forest (RF) analysis and multivariable logistic regression was performed.

View Article and Find Full Text PDF

Purpose: Although idiopathic scoliosis is a common three-dimensional deformity, there is a lack of studies evaluating the associations between the aortic-vertebral distance (AVD) and spinal deformities in all planes. The study therefore aimed to evaluate how the coronal and sagittal curvature, vertebral rotation and aortic-vertebral angle (AVA) affect the AVD in idiopathic scoliosis.

Methods: The AVD, AVA, vertebral rotation and curve angles were measured on preoperative magnetic resonance imaging and radiographs in 46 patients who underwent posterior spinal fusion with pedicle screw instrumentation for idiopathic scoliosis Lenke types 1 and 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!