Background: Apple (Malus ssp.), one of the most important temperate fruit crops, has a long cultivation history and is economically important. To identify the genetic relationships among the apple germplasm accessions, whole-genome structural variants identified between M. domestica cultivars 'Jonathan' and 'Golden Delicious' were used.
Results: A total of 25,924 insertions and deletions (InDels) were obtained, from which 102 InDel markers were developed. Using the InDel markers, we found that 942 (75.3%) of the 1251 Malus accessions from 35 species exhibited a unique identity signature due to their distinct genotype combinations. The 102 InDel markers could distinguish 16.7-71.4% of the 331 bud sports derived from 'Fuji', 'Red Delicious', 'Gala', 'Golden Delicious', and other cultivars. Five distinct genetic patterns were found in 1002 diploid accessions based on 78 bi-allele InDel markers. Genetic structure analysis indicated that M. domestica showed higher genetic diversity than the other species. Malus underwent a relatively high level of wild-to-crop or crop-to-wild gene flow. M. sieversii was closely related to both M. domestica and cultivated Chinese cultivars.
Conclusions: The identity signatures of Malus accessions can be used to determine distinctness, uniformity, and stability. The results of this study may also provide better insight into the genetic relationships among Malus species.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7708918 | PMC |
http://dx.doi.org/10.1186/s12870-020-02744-2 | DOI Listing |
Mar Biotechnol (NY)
January 2025
Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, 266003, China.
Given the challenges of overcrowded coastal aquaculture spaces and insufficient production, utilizing saline-alkaline water areas represents a vital strategy to alleviate these bottlenecks. Spotted sea bass (Lateolabrax maculatus), with its formidable osmoregulatory capabilities, is an ideal candidate to develop a saline-alkaline tolerant strain. In our study, genotypic and phenotypic data from 287 L.
View Article and Find Full Text PDFInt J Syst Evol Microbiol
January 2025
National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology Group, MACS-Agharkar Research Institute, Pune, India.
Yeast strains representing a novel asexual ascomycetous species were isolated from seven flowers. Sequencing of the chromosomal regions coding for the D1/D2 domains of the large subunit ribosomal RNA, the ITS1-5.8S-ITS2 segments and parts of the gene coding for the small subunit ribosomal RNA showed that the isolates were conspecific.
View Article and Find Full Text PDFBiology (Basel)
December 2024
Florida Museum of Natural History, University of Florida, 1659 Museum Rd., Gainesville, FL 32611, USA.
Fishes in the cypriniform family Catostomidae (suckers) are evolutionary tetraploids. The use of nuclear markers in the phylogenetic study of this important group has been greatly hindered by the challenge of identifying paralogous copies of genes. In the present study, we used two different methods to separate the gene copies of five single-copy nuclear genes (i.
View Article and Find Full Text PDFBiology (Basel)
November 2024
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia.
The aim of this work was to select InDel markers sufficient for human identification and to create a routine method for their genotyping. We analyzed the allele distribution of all known InDels in European, East Asian, South Asian, African, and American populations and selected markers whose minor allele frequency, MAF, was ≥ 0.30.
View Article and Find Full Text PDFAnimals (Basel)
December 2024
State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China.
Diverse feeding habits in teleosts involve a wide range of appetite-regulating factors. As an appetite-suppressing gene, the polymorphisms of in largemouth bass () were validated via sequencing and high-resolution melting (HRM). The frequency distribution of different genotypes were analyzed in two populations, and physiological responses of different genotypes to feed domestication were investigated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!