Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Aiming towards state estimation and information fusion for nonlinear systems with heavy-tailed measurement noise, a variational Bayesian Student's t-based cubature information filter (VBST-CIF) is designed. Furthermore, a multi-sensor variational Bayesian Student's t-based cubature information feedback fusion (VBST-CIFF) algorithm is also derived. In the proposed VBST-CIF, the spherical-radial cubature (SRC) rule is embedded into the variational Bayes (VB) method for a joint estimation of states and scale matrix, degree-of-freedom (DOF) parameter, as well as an auxiliary parameter in the nonlinear system with heavy-tailed noise. The designed VBST-CIF facilitates multi-sensor fusion, allowing one to derive a VBST-CIFF algorithm based on multi-sensor information feedback fusion. The performance of the proposed algorithms is assessed in target tracking scenarios. Simulation results demonstrate that the proposed VBST-CIF/VBST-CIFF outperform the conventional cubature information filter (CIF) and cubature information feedback fusion (CIFF) algorithms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7729753 | PMC |
http://dx.doi.org/10.3390/s20236757 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!