A plant can combine physical and chemical tools to interact with other organisms. Some are designed for pollinator attraction (i.e., colors and volatile organic compounds-VOCs); others can act to discourage herbivores (i.e., non-glandular trichomes). Few studies fully address available tools in a single species; notwithstanding, this information can be pivotal in understanding new interactions out of the home range. We characterized flower traits, emission profiles of constitutive compounds from flowers and leaves, micro-morphology of the glandular trichomes, and listed flower visitors of two Mexican bird-pollinated species ( and ), growing in an Italian botanical garden. Flowers were highly variable in their morphometric characteristics. In both species, four trichome morphotypes with similar histochemistry and distribution were documented for leaves and flowers except the calyx abaxial side. The vegetative emission profiles were qualitatively more complex than the floral ones; however, common compounds occurring in high relative percentages were β-caryophyllene and germacrene D. Floral bouquets were dominated by limonene and β-pinene in and by 1,8-cineole in . Two potential (non-bird) pollinators were especially abundant: small bees belonging to the genus and large bees belonging to the species . Our study highlights the plasticity of these plants, as well as tools that can be conveniently used to establish novel interactions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7760984PMC
http://dx.doi.org/10.3390/plants9121645DOI Listing

Publication Analysis

Top Keywords

glandular trichomes
8
emission profiles
8
bees belonging
8
species
5
tools
4
tools tie
4
tie flower
4
flower characteristics
4
characteristics voc
4
voc emission
4

Similar Publications

Background: Light-emitting diodes (LEDs) are being used in controlled environments to enhance crop production and pest management with most studies focusing on continuous treatments (applied throughout the entire daytime or nighttime period). Here, we tested the hypothesis that providing tomato plants with timed LED regimes (daily 3-h doses of red, blue, or far-red LED) during the day or at night may affect their traits (leaf reflectance indices, element composition, and phenolic profile), performance of two-spotted spider mites (Tetranychus urticae) (TSSM), and a species of predatory mite (Phytoseiulus persimilis).

Results: Nighttime LED regimes significantly altered leaf element composition: red LED increased K levels, blue LED enhanced Mg levels, and far-red LED enhanced Mn and Cu and reduced Zn levels.

View Article and Find Full Text PDF

The adaxial leaf surface of butterworts (Pinguicula L.) presents specialized structures for carnivory, such as trichomes and sessile glands. The micromorphology of abaxial leaf surfaces has rarely been investigated; therefore, this study aimed to compare the micromorphology of adaxial and abaxial surfaces through electron scanning microscopy (SEM) and light microscopy (LM).

View Article and Find Full Text PDF

Genome-wide identification of the WD40 protein family and functional characterization of AaTTG1 in Artemisia annua.

Int J Biol Macromol

December 2024

Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Pharmacy, Second Affiliated Hospital of Navy Medical University, Shanghai 200003, China. Electronic address:

Sweet wormwood (Artemisia annua), an annual herb belonging to the Compositae family, is the main source of the potent anti-malarial drug artemisinin, which is mainly produced in glandular trichomes of A. annua leaves. The WD40 protein family is one of the largest protein families in eukaryotes and plays crucial roles in regulating plant growth and development, stress responses, and secondary metabolite biosynthesis.

View Article and Find Full Text PDF

Leaves of tomato plants contain various glandular trichomes that produce a wide range of metabolic products including acylsugars, which may serve as a defense mechanism against various insect pests. Acylsugars exhibit significant structural diversity, differing in their sugar cores, acylated positions, and type of acyl chains. This work demonstrated a comprehensive approach using multidimensional separation techniques, specifically liquid chromatography-ion mobility-tandem mass spectrometry (LC-IM-MS/MS), for structural characterization, and the discrimination of different tomato plants (one cultivar and five accessions) was demonstrated using tomato leaf extracts; six genotypes from five species of were represented.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!