Martensitic creep-resistant P92 steel was deformed by different methods of severe plastic deformation such as rotation swaging, high-pressure sliding, and high-pressure torsion at room temperature. These methods imposed significantly different equivalent plastic strains of about 1-30. It was found that rotation swaging led to formation of heterogeneous microstructures with elongated grains where low-angle grain boundaries predominated. Other methods led to formation of ultrafine-grained (UFG) microstructures with high frequency of high-angle grain boundaries. Constant load tensile creep tests at 873 K and initial stresses in the range of 50 to 300 MPa revealed that the specimens processed by rotation swaging exhibited one order of magnitude lower minimum creep rate compared to standard P92 steel. By contrast, UFG P92 steel is significantly softer than standard P92 steel, but differences in their strengths decrease with increasing stress. Microstructural results suggest that creep behavior of P92 steel processed by severe plastic deformation is influenced by the frequency of high-angle grain boundaries and dynamic grain coarsening during creep.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7728157PMC
http://dx.doi.org/10.3390/ma13235330DOI Listing

Publication Analysis

Top Keywords

p92 steel
20
rotation swaging
12
grain boundaries
12
severe plastic
8
plastic deformation
8
led formation
8
frequency high-angle
8
high-angle grain
8
standard p92
8
steel
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!