This study investigates the effects of dielectric barrier discharge (DBD) plasma treatment (1.1 kV, 43 kHz, N 1.5 L/min, 10~60 min) on human norovirus (HuNoV) GII.4 infectivity in fresh oysters. HuNoV viability in oysters was assessed by using propidium monoazide (PMA) as a nucleic acid intercalating dye before performing a real-time reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Additionally, the impact of the DBD plasma treatment on pH and Hunter colors was assessed. When DBD plasma was treated for 60 min, the HuNoV genomic titer reduction without PMA pretreatment was negligible (<1 log copy number/µL), whereas when PMA treatment was used, HuNoV titer was reduced to >1 log copy number/µL in just 30 min. D and D-value of HuNoV infectivity were calculated as 36.5 and 73.0 min of the DBD plasma treatment, respectively, using the first-order kinetics model (R = 0.98). The pH and Hunter colors were not significantly different ( > 0.05) between the untreated and DBD-plasma-treated oysters. The results suggest that PMA/RT-qPCR could help distinguish HuNoV infectivity without negatively affecting oyster quality following >30 min treatment with DBD plasma. Moreover, the inactivation kinetics of nonthermal DBD plasma against HuNoV in fresh oysters might provide basic information for oyster processing and distribution.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7760321 | PMC |
http://dx.doi.org/10.3390/foods9121731 | DOI Listing |
Int J Food Microbiol
December 2024
Department of Food Engineering and Technology, School of Food Engineering, Universidade Estadual de Campinas, São Paulo, Brazil. Electronic address:
Bread is a greatly consumed bakery product worldwide. Unfortunately, it is an optimal substrate for fungal contamination and deterioration (aw > 0.95), commonly caused by the genera Penicillium, Paecilomyces, and Aspergillus, resulting in significant economic losses.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
College of Electrical and Information Engineering, Hunan University, Changsha 410082, China.
Ammonia is a promising alternative energy to fossil fuels for reducing CO emissions. Plasma catalysis technology for ammonia production using clean energy is gaining attention. Introducing catalysts to the plasma increases ammonia synthesis rates, but the effect of catalyst particle movement in the plasma region, such as in a fluidized-bed reactor, is less explored.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Laboratory of Plasma and Energy Conversion, School of Physics and Optoelectronic Engineering, Ludong University, Yantai, China. Electronic address:
Understanding of the structure and interfacial merits that reactive metal-organic frameworks (MOFs) undergo is critical for constructing efficient catalysts for non-thermal plasma-assisted conversion of greenhouse gases. Herein, we proposed a free-standing bimetallic (Co/Ni) MOFs supported on bacterial cellulose (BC) foams (Co/Ni-MOF@BC) toward the coaxial dielectric barrier discharge (DBD) plasma-catalytic system, of which the Co/Ni ions coordination demonstrated an intriguing textual uplifting of the malleable BC nanofiber network with abundant pores up to micrometer-scale, which could impart a more intensive predominant filamentary microdischarge current to 180 mA with stronger plasma-catalytic interaction. Remarkably, compared to the monometallic MOF@BC foams, this bimetallic Co/Ni-MOF@BC also delivered a substantially improved alkaline absorption ability as further confirmed by the CO- temperature-programmed desorption (TPD) result.
View Article and Find Full Text PDFJ Environ Manage
December 2024
School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China. Electronic address:
In this study, a novel process of dielectric barrier discharge (DBD)/chlorine for levofloxacin (LEV) degradation was investigated. The combined system boosted the degradation efficiency of LEV from 77.8% to 97.
View Article and Find Full Text PDFPolymers (Basel)
November 2024
Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand.
In this study, we investigated the behaviors of epoxy composites reinforced with bamboo (BF) and hemp (HF) fibers. Both fibers were treated using dielectric barrier discharge (DBD) plasma for various durations (2.5 to 20 min).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!