Interpretable Cross-Subject EEG-Based Emotion Recognition Using Channel-Wise Features.

Sensors (Basel)

Computer Science and Engineering, Konkuk University, Seoul 05029, Korea.

Published: November 2020

Electroencephalogram (EEG)-based emotion recognition is receiving significant attention in research on brain-computer interfaces (BCI) and health care. To recognize cross-subject emotion from EEG data accurately, a technique capable of finding an effective representation robust to the subject-specific variability associated with EEG data collection processes is necessary. In this paper, a new method to predict cross-subject emotion using time-series analysis and spatial correlation is proposed. To represent the spatial connectivity between brain regions, a channel-wise feature is proposed, which can effectively handle the correlation between all channels. The channel-wise feature is defined by a symmetric matrix, the elements of which are calculated by the Pearson correlation coefficient between two-pair channels capable of complementarily handling subject-specific variability. The channel-wise features are then fed to two-layer stacked long short-term memory (LSTM), which can extract temporal features and learn an emotional model. Extensive experiments on two publicly available datasets, the Dataset for Emotion Analysis using Physiological Signals (DEAP) and the SJTU (Shanghai Jiao Tong University) Emotion EEG Dataset (SEED), demonstrate the effectiveness of the combined use of channel-wise features and LSTM. Experimental results achieve state-of-the-art classification rates of 98.93% and 99.10% during the two-class classification of valence and arousal in DEAP, respectively, with an accuracy of 99.63% during three-class classification in SEED.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7727848PMC
http://dx.doi.org/10.3390/s20236719DOI Listing

Publication Analysis

Top Keywords

channel-wise features
12
eeg-based emotion
8
emotion recognition
8
cross-subject emotion
8
emotion eeg
8
eeg data
8
subject-specific variability
8
channel-wise feature
8
emotion
6
channel-wise
5

Similar Publications

Non-alcoholic fatty liver disease (NAFLD) is a highly prevalent chronic liver condition characterized by excessive hepatic fat accumulation. Early diagnosis is crucial as NAFLD can progress to more severe conditions like steatohepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma without timely intervention. While liver biopsy remains the gold standard for NAFLD assessment, abdominal ultrasound (US) imaging has emerged as a widely adopted non-invasive modality due to convenience and low cost.

View Article and Find Full Text PDF

The detection and excision of colorectal polyps, precursors to colorectal cancer (CRC), can improve survival rates by up to 90%. Automated polyp segmentation in colonoscopy images expedites diagnosis and aids in the precise identification of adenomatous polyps, thus mitigating the burden of manual image analysis. This study introduces FocusUNet, an innovative bi-level nested U-structure integrated with a dual-attention mechanism.

View Article and Find Full Text PDF

Wavelet-Driven Multi-Band Feature Fusion for RGB-T Salient Object Detection.

Sensors (Basel)

December 2024

School of Mechanical Engineering & Automation, Northeastern University, Shenyang 110819, China.

RGB-T salient object detection (SOD) has received considerable attention in the field of computer vision. Although existing methods have achieved notable detection performance in certain scenarios, challenges remain. Many methods fail to fully utilize high-frequency and low-frequency features during information interaction among different scale features, limiting detection performance.

View Article and Find Full Text PDF

Early detection of subjective cognitive decline from self-reported symptoms: An interpretable attention-cost fusion approach.

J Biomed Inform

January 2025

Department of Information Management and Business Analytics, Montclair State University, Feliciano School of Business, NJ, USA. Electronic address:

Background And Objective: Subjective cognitive decline (SCD) refers to self-reported difficulties in concentration, memory, and decision-making. Since SCD is based on subjective experiences, no specific medical test can definitively confirm its presence, making early detection challenging. Thus, it is advantageous to develop an AI model to capitalize on self-reported health complications, personality traits, and sociodemographic factors for early detection of SCD.

View Article and Find Full Text PDF

Magnetic Resonance Imaging (MRI) stands out as a notable non-invasive method for medical imaging assessments, widely employed in early medical diagnoses due to its exceptional resolution in portraying soft tissue structures. However, the MRI method faces challenges with its inherently slow acquisition process, stemming from the sequential sampling in k-space and limitations in traversal speed due to physiological and hardware constraints. Compressed Sensing in MRI (CS-MRI) accelerates image acquisition by utilizing greatly under-sampled k-space information.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!