The enzyme soluble epoxide hydrolase (sEH) plays a central role in metabolism of bioactive lipid signaling molecules. The substrate-specific hydrolase activity of sEH converts epoxyeicosatrienoic acids (EETs) to less bioactive dihydroxyeicosatrienoic acids. EETs exhibit anti-inflammatory, analgesic, antihypertensive, cardio-protective and organ-protective properties. Accordingly, sEH inhibition is a promising therapeutic strategy for addressing a variety of diseases. In this review, we describe small molecule architectures that have been commonly deployed as sEH inhibitors with respect to angiogenesis, inflammation and cancer. We juxtapose commonly used synthetic scaffolds and natural products within the paradigm of a multitarget approach for addressing inflammation and inflammation induced carcinogenesis. Structural insights from the inhibitor complexes and novel strategies for development of sEH-based multitarget inhibitors are also presented. While sEH inhibition is likely to suppress inflammation-induced carcinogenesis, it can also lead to enhanced angiogenesis via increased EET concentrations. In this regard, sEH inhibitors in combination chemotherapy are described. Urea and amide-based architectures feature prominently across multitarget inhibition and combination chemotherapy applications of sEH inhibitors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7727688 | PMC |
http://dx.doi.org/10.3390/molecules25235488 | DOI Listing |
Arch Pharm (Weinheim)
January 2025
Department of Pharmacy, University of Salerno, Fisciano, Italy.
Inhibiting microsomal prostaglandin E synthase-1 (mPGES-1), an inducible enzyme involved in prostaglandin E (PGE) biosynthesis and tumor microenvironment (TME) homeostasis, is a valuable strategy for treating inflammation and cancer. In this work, 5-methylcarboxamidepyrrole-based molecules were designed and synthesized as new compounds targeting mPGES-1. Remarkably, compounds 1f, 2b, 2c, and 2d were able to significantly reduce the activity of the isolated enzyme, showing IC values in the low micromolar range.
View Article and Find Full Text PDFJ Microbiol Biotechnol
November 2024
Institute of Health Science, Jeonju University, Jeonju-si 55069, Republic of Korea.
Soluble epoxide hydrolase (sEH) and pro-inflammatory cytokines are associated with the development of inhibitors for cardiovascular and inflammatory diseases. Here, we report on four natural sEH inhibitors isolated from the aerial parts of (Thunb.) Hyl.
View Article and Find Full Text PDFJ Med Chem
December 2024
Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China.
Amino-berberine has remained underexplored due to limited biological evaluation and total synthesis approaches. In inflammation therapy, soluble Epoxide Hydrolase (sEH) is a promising target, yet natural scaffolds remain underutilized. Our study advances the field by redesigning natural compounds─berberine and sanguinarine─with strategic urea modifications and hydrogenated frameworks, creating novel sEH inhibitors with enhanced efficacy.
View Article and Find Full Text PDFACS Med Chem Lett
November 2024
Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States.
Soluble epoxide hydrolase (sEH) is a bifunctional enzyme involved in fatty acid metabolism and a promising drug target. We previously reported first-generation sEH proteolysis-targeting chimeras (PROTACs) with limited degradation potency and low aqueous and metabolic stability. Herein, we report the development of next-generation sEH PROTAC molecules with improved stability and degradation potency.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2024
Department of Anesthesia of the Second Affiliated Hospital and CNTTI of College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!