A hybrid scaffold of gelatin-glycosaminoglycan matrix and fibrin (FGG) has been synthesized to improve the mechanical properties, degradation time and cell response of fibrin-like scaffolds. The FGG scaffold was fabricated by optimizing some properties of fibrin-only gel and gelatin-glycosaminoglycan (GG) scaffolds. Mechanical analysis of optimized fibrin-only gel showed the Young module and tensile strength of up to 72 and 121 KPa, respectively. Significantly, the nine-fold increase in the Young modulus and a seven-fold increase in tensile strength was observed when fibrin reinforced with GG scaffold. Additionally, the results demonstrated that the degradation time of fibrin was enhanced successfully up to 7 days which was much longer time compared to fibrin-only gel with 38 h of degradation time. More than 45% of FGG initial mass was preserved on day 7 in the presence of aprotinin. Human corneal fibroblast cells (HCFCs) were seeded on the FGG, fibrin-only gel and GG scaffolds for 5 days. The FGG scaffold showed excellent cell viability over 5 days, and the proliferation of HCFCs also increased significantly in comparison with fibrin-only gel and GG scaffolds. The FGG scaffold illustrates the great potential to use in which appropriate stability and mechanical properties are essential to tissue functionality.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.msec.2020.111430DOI Listing

Publication Analysis

Top Keywords

fibrin-only gel
20
degradation time
12
fgg scaffold
12
hybrid scaffold
8
matrix fibrin
8
human corneal
8
corneal fibroblast
8
fibroblast cells
8
mechanical properties
8
scaffolds fgg
8

Similar Publications

Obesity and its associated comorbidities place a substantial burden on public health. Given the considerable potential of brown adipose tissue in addressing metabolic disorders that contribute to dysregulation of the body's energy balance, this area is an intriguing avenue for research. This study aimed to assess the impact of various polymers, including collagen type I, fibronectin, laminin, gelatin, gellan gum, and poly-l-lysine (PLL), on the brown adipogenic differentiation of dedifferentiated fat cells within a fibrin gel matrix.

View Article and Find Full Text PDF

Background: High rates of structural failure are reported after rotator cuff repairs due to inability to recreate the native enthesis during healing. The development of biological augmentation methods that mitigate scar formation and regenerate the enthesis is still an unmet need. Since neonatal enthesis is capable of regeneration after injury, this study tested whether delivery of neonatal tendon progenitor cells (TPCs) into the adult injured environment can enhance functional and structural supraspinatus enthesis and tendon healing.

View Article and Find Full Text PDF

Comparative Studies of Fibrin-Based Engineered Vascular Tissues and Notch Signaling from Progenitor Cells.

ACS Biomater Sci Eng

May 2020

Department of Chemical and Biochemical Engineering, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B9, Canada.

The main impetus of vascular tissue engineering is clinical translation, but an equally appealing and impactful use of engineered vascular tissues is as preclinical testing platforms for studying vascular disease and developing therapeutic drugs and understanding of physiologically relevant vascular biology. Developing model engineered tissues will aid in narrowing the significant knowledge gaps in functional tissue formation, which is regulated by intricate cell signaling in a three-dimensional space. In this study, we fabricated tubular engineered vascular tissues using cross-linked fibrinogen as a scaffold and nondifferentiated embryonic rat vascular smooth muscle cell line (A10 cells) and mouse embryonic multipotent mesenchymal progenitor cell line (10T1/2 cells) as model vascular cells.

View Article and Find Full Text PDF

A hybrid scaffold of gelatin-glycosaminoglycan matrix and fibrin (FGG) has been synthesized to improve the mechanical properties, degradation time and cell response of fibrin-like scaffolds. The FGG scaffold was fabricated by optimizing some properties of fibrin-only gel and gelatin-glycosaminoglycan (GG) scaffolds. Mechanical analysis of optimized fibrin-only gel showed the Young module and tensile strength of up to 72 and 121 KPa, respectively.

View Article and Find Full Text PDF

Efforts for tissue engineering vascular grafts focuses on the tunica media and intima, although the tunica adventitia serves as the primary structural support for blood vessels. In surgery, during endarterectomies, surgeons can strip the vessel, leaving the adventitia as the main strength layer to close the vessel. Here, we adapted our recently developed technique of forming vascular tissue rings then stacking the rings into a tubular structure, to accommodate human fibroblasts to create adventitia vessels in 8 days.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!