The present study aimed to develop nanocapsules (NCs) loaded with curcumin (CCM) using different coatings, comparing the effect of these coatings on physicochemical properties of NCs. NCs were prepared by interfacial deposition of performed polymer, using different polymers as coatings (P80, PEG, Chitosan and Eudragit RS100®) and then, characterized in detail by different techniques (AFM, FTIR, DSC, XRD, among others). In vitro studies were performed, evaluating the release profile, cytotoxicity and antimalarial activity of CCM-loaded NCs. Overall, all CCM-loaded NCs samples exhibited typical characteristics as nanometric size, coating-dependent zeta potential, acidic pH value, span values below 2, homogeneous morphology and CCM-distribution in pseudophases of type VI (for all of coatings). Experimental results showed that CCM remains stable in lipid-core of NCs, maintaining its physicochemical and biological properties after nanoencapsulation process. In vitro release assays showed that nanoencapsulation was an efficient strategy to controlled release of CCM and P80-coated NCs presented slowest CCM-release considering all nanoformulations tested. Still, CCM-loaded NCs presented no cytotoxic effect. Also, all CCM-loaded NCs showed a perceptible antimalarial activity independently of their coatings (anionic and cationic), with more expressive results for CS-coated NCs. In conclusion, findings for CCM-loaded NCs and their different coatings seem to be a promising strategy to improve your biological activity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.msec.2020.111356DOI Listing

Publication Analysis

Top Keywords

ccm-loaded ncs
20
antimalarial activity
12
ncs
11
ncs presented
8
coatings
6
ccm-loaded
5
curcumin-loaded nanocapsules
4
nanocapsules influence
4
influence surface
4
surface characteristics
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!