Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A series of metal-organic frameworks (MOFs) based on aluminum-benzene dicarboxylates (MIL-53, NH-MIL-53, and NH-MIL-101) at different ratios have been synthesized, and their adsorption performances for methotrexate (MTX), an anti-cancer drug, have been investigated in terms of adsorption kinetics, isotherms, solution pH, thermodynamics, mechanism, and recyclability. Maximum adsorption values of 374.97, 387.82, and 457.69 mg/g were observed for MIL-53, NH-MIL-53, and NH-MIL-101 , respectively. Our study shows that adsorption capacity of MTX depends not only on surface area and pore volume but also on the zeta potential and the presence of suitable functional groups. Higher adsorption of NH-MIL-101 observed for MTX than the other synthesized MOFs may be attributed to its large surface area, large total pore volume, high positive zeta potential, and polar amino functional groups located on its surface, which are responsible for its increased interactions with MTX molecules. Adsorption isotherms and kinetics of MTX onto NH-MIL-101 followed the Langmuir and pseudo-second-order kinetic equations. Thermodynamic data suggest that adsorption of MTX onto NH-MIL-101 is spontaneous and exothermic, while the adsorption mechanism is governed by electrostatic interactions, π-π stacking interactions, and H-bonding. Regeneration and recyclability of NH-MIL-101 were also investigated by washing with ethanol to observe its decreased adsorption performance towards MTX. It was slightly decreased after seven adsorption-desorption cycles, indicating excellent regeneration and good structural stability under the chosen experimental conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2020.111448 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!