It is known that organic nitrogen may modify uptake and toxicity of metals but direct metabolic and microbial comparison of various organic N sources is not available. We therefore studied comparative impact of additional N sources (nitrate, urea or allantoin as 1 mM of N for each compound in addition to 15 mM of inorganic N in the Hoagland solution) on Cd toxicity and microbial activity in common crop cucumber. Organic N significantly elevated the growth, chlorophyll content and photosynthetic activity under Cd excess in comparison with inorganic N though the impact on Cd uptake was negligible. Both organic N compounds also affected accumulation of mineral nutrients, total N, amino acids, and protein content in Cd-stressed plants. Among organic acids, mainly allantoin and partially urea affected accumulation of citrate and tartrate. The most notably, we detected that allantoin was decomposed even within 24 h by microbes into the urea, but it significantly elevated rhizosphere microbial activity. All these data indicate that allantoin is metabolized by plants/microbes into the urea and that it affects microbes mainly in the rhizosphere, which could contribute to amelioration of Cd toxicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2020.123887 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!