It is known that organic nitrogen may modify uptake and toxicity of metals but direct metabolic and microbial comparison of various organic N sources is not available. We therefore studied comparative impact of additional N sources (nitrate, urea or allantoin as 1 mM of N for each compound in addition to 15 mM of inorganic N in the Hoagland solution) on Cd toxicity and microbial activity in common crop cucumber. Organic N significantly elevated the growth, chlorophyll content and photosynthetic activity under Cd excess in comparison with inorganic N though the impact on Cd uptake was negligible. Both organic N compounds also affected accumulation of mineral nutrients, total N, amino acids, and protein content in Cd-stressed plants. Among organic acids, mainly allantoin and partially urea affected accumulation of citrate and tartrate. The most notably, we detected that allantoin was decomposed even within 24 h by microbes into the urea, but it significantly elevated rhizosphere microbial activity. All these data indicate that allantoin is metabolized by plants/microbes into the urea and that it affects microbes mainly in the rhizosphere, which could contribute to amelioration of Cd toxicity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2020.123887DOI Listing

Publication Analysis

Top Keywords

microbial activity
12
organic nitrogen
8
toxicity microbial
8
plants organic
8
organic
6
nitrogen modulates
4
modulates cadmium
4
toxicity
4
cadmium toxicity
4
microbial
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!