Eighteen biocides used in building materials and domestic products were monitored in wastewater treatment plants (WWTPs) during dry weather and in combined sewer overflows (CSOs) during wet weather in the Paris conurbation. The aims of this study were to (i) acquire data on biocides in urban waters, which are very scarce up to now, (ii) identify their origins in CSOs with the perspective of reducing these contaminants at source, and (iii) compare and rank biocide pathways to the river (dry vs. wet weather) at the annual and conurbation scales. The results showed the ubiquity of the 18-targeted biocides in WWTP waters and CSOs. High concentrations of methylisothiazolinone, benzisothiazolinone (0.2-0.9 μg/L) and benzalkonium C12 (0.5-6 μg/L) were measured in wastewater. Poor WWTP removals (< 50 %) were observed for most of the biocides. Both wastewater (mainly domestic uses) and stormwater (leaching from building materials) contributed to the CSO contamination. However, benzisothiazolinone mainly came from wastewater whereas diuron, isoproturon, terbutryn, carbendazim, tebuconazole, and mecoprop mainly came from stormwater. Annual mass loads discharged by WWTPs and CSOs into the Seine River were estimated using a stochastic approach (Monte Carlo simulations) at the conurbation scale and showed that WWTP discharges are the major entry pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2020.123765 | DOI Listing |
Environ Sci Process Impacts
January 2025
State Key Laboratory for Ecological Security of Regions and Cities, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
An integrated understanding of dissolved phosphorous (DP) export mechanism and controls on export over dry and wet periods is crucial for riverine ecological restorations in dammed river basins considering its high bioavailability and retention rates at dams. Riverine DP transport patterns (composition, sources, and transport pathways), export controls, and fate were investigated over the 2020 wet season (5 events) and dry seasons before and after it (2 events: dry and dry) in a semi-arid, small-dammed watershed to comprehend the links between terrestrial DP sources and aquatic DP sinks. Close spatiotemporal monitoring of the full range of phosphorous and total suspended solids (TSSs) and subsequent analyses (hysteresis, hierarchical partitioning, and coefficient of variation) provided the basis for the study.
View Article and Find Full Text PDFBiomacromolecules
January 2025
Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
As an abundant renewable natural material, starch has attracted unprecedented interest in the biomedical field. Carboxylated starch particles have been investigated for topical hemostasis, but the powder may not provide physical protection or support for wounds. Here, we prepared macroporous cryogel sponges of methacrylated carboxymethyl starch (CM-ST-MA) containing a covalent and a calcium ionic double network.
View Article and Find Full Text PDFJ Environ Manage
January 2025
School of Business, Xi'an University of Finance and Economics, Xi'an, 710100, China.
The purpose of this study is to solve the problem of ammonia (NH) release when modified magnesium slag (MMS) is used as coal mine backfill cementitious material, and to explore its chemical mechanism and put forward effective solutions. Uniaxial compressive strengths (UCS) hydration kinetics, scanning electron microscope (SEM), and thermogravimetric analysis-derivative thermogravimetry (TG-DTG), X-ray diffractometer (XRD) and other testing methods were used to study the evolution of the properties of MMS-based backfill material, which provided a scientific basis for the safe utilization of MMS. First, the chemical mechanism underlying the release of NH from MMS was identified, and it was confirmed that MgN and LiN are the main nitrogen sources.
View Article and Find Full Text PDFJ Environ Manage
January 2025
CAPA Strategies, Portland, 97242, OR, USA.
This study introduces two refined rainfall anomaly indices-the Modified Rainfall Anomaly Index (MRAI) and the Standardized Rainfall Anomaly Index (SRAI)-to address limitations in the traditional Rainfall Anomaly Index (RAI). The existing RAI struggles to effectively capture extreme wet and dry rainfall conditions and relies on a simplistic formulation. To evaluate these indices on a continental scale, data from the Integrated Multi-Satellite Retrievals for GPM (IMERG) was used for the Conterminous United States (CONUS), enabling scalability to ungaged locations and beyond.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
Department of Industrial Engineering, University of Applied Sciences Technikum Wien, Hoechstaedtplatz 6, Vienna 1200, Austria. Electronic address:
Lead (Pb), a toxic metal, causes severe health hazards to both humans and plants due to environmental pollution. Biochar addition has been efficiently utilized to enhance growth of plants as well as yield in the presence of Pb-induced stress. The present research introduces a novel use of biochar obtained from the weed Achyranthes japonica to enhance the growth of plants in Pb-contaminated soil.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!