Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Superfine sand in waste activated sludge (WAS) increased the uncertainty of anaerobic fermentation. Experiments showed that VFAs production from WAS was positively affected by superfine sand, with an increase from 2513 mg COD/L in the control (without superfine sand) to 3002 mg COD/L with superfine sand. A mechanism study demonstrated that the main factor responsible for the improved VFAs accumulation in response to superfine sand was acetic acid, which increased by nearly 30%. Further investigation exhibited that the process of solubilization and acidification were facilitated by superfine sand and the abundance of anaerobic functional microorganisms was greatly increased. Moreover, the activities of acetate kinase (AK) as well as the quantity of AK encoding gene were greatly promoted by superfine sand. The heat release during WAS anaerobic fermentation with superfine sand was higher than that without superfine sand (25.8 × 10 versus 24.7 × 10 W·min at about 70 min).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2020.124249 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!