The quality of dissolved organic matter extracted at different times from pig compost and its copper binding capacity based on EEM-PARAFAC.

Ecotoxicol Environ Saf

College of Resources and Environmental Sciences, China Agricultural University, Beijing 100094, China. Electronic address:

Published: January 2021

AI Article Synopsis

  • The study examines how different extraction times (6, 12, and 24 hours) affect the composition and quality of compost tea derived from pig manure compost.
  • Results showed that shorter extraction times (6 and 12 hours) led to higher protein content and humic-like substances, while the 12-hour extraction produced the highest aromaticity and molecular weight.
  • The findings suggest that shorter extraction times (6 and 12 hours) are preferable for producing compost tea with better quality and stronger copper binding capacity.

Article Abstract

Dissolved organic matter extracted from compost tea, can be regarded as alternatives to inorganic fertilizers as well to be used as a washing agent for heavy metal polluted soil. However, the composition and quality of compost tea produced under different extraction time are still unknown. The objective of the current study was set to explore the influence of different extraction time (i.e., 6, 12, and 24 h) on the composition, quality, and copper binding capacity of compost tea originated from pig manure compost. The results indicated that the extraction time obviously influenced the phenolic, aromatic carboxylic, and polycyclic aromatic groups of compost tea. In addition, the compost tea undergo the shorter extraction time (i.e., 6 and 12 h) contained more protein and humic-like compositions. Among the all treatments tested herein, the compost tea produced from 12 h extraction time obviously exhibited higher aromaticity, molecular weight, and humification degree than other two treatments. The highest stability constant value (log K) was observed for the shortest extraction time, i.e., 6.08. According to the quality measures and copper binding capability, shorter extraction times (i.e., 6 and 12 h) would be suggested for compost tea production from pig manure compost.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2020.111545DOI Listing

Publication Analysis

Top Keywords

compost tea
28
extraction time
24
copper binding
12
compost
10
dissolved organic
8
organic matter
8
matter extracted
8
binding capacity
8
composition quality
8
tea produced
8

Similar Publications

Cd-contaminated saline soil is now becoming a serious threat affecting sustainable agriculture throughout the world. In this study, organic amendments (OA) were applied to Cd-contaminated saline soils to, firstly, reduce the bioavailability of Cd in soil and, secondly, minimize Cd accumulation in red amaranth (Amaranthus gangeticus) plant. The soil was treated with 1% and 2% of cow dung (CD), vermicompost (VC), waste tea (WT), saw dust (SD), rice hull (RH), and compost.

View Article and Find Full Text PDF

Comprehensive effects of tea branch biochar on antibiotic resistance profiles and C/N/S cycling in the compost microbiota of animal manure.

Sci Total Environ

December 2024

Key Laboratory of Applied Biotechnology on Animal Science & Veterinary Medicine of Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Belt and Road International Joint Laboratory for One Health and Food Safety, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China. Electronic address:

The comprehensive effects of exogenous additives on microbial-driven antibiotic resistance profiles and C/N/S conversion in animal manure composting remains uncertain. This study examined whether tea branch biochar could regulate the microflora involved in antibiotic resistance and C/N/S conversion during pig and chicken manure composting. Compared with the control treatment, biochar addition prolonged the high-temperature period (>55 °C) for 1-2 days and raised the maximum temperature in chicken manure composting.

View Article and Find Full Text PDF

The use of compost tea is important to improve food safety. However, the effect of compost tea on N uptake and partitioning in tomato is unclear. In this study, we measured temporal and spatial changes in nitrogen content, enzyme activities, and expression levels of nitrogen transporters genes in different organs of tomato treated with five nutrient solutions.

View Article and Find Full Text PDF

Background: To counteract soil degradation, it is important to convert conventional agricultural practices to environmentally sustainable management practices. To this end, the application of biostimulants could be considered a good strategy. Compost, produced by the composting of biodegradable organic compounds, is a source of natural biostimulants, such as humic acids, which are naturally occurring organic compounds that arise from the decomposition and transformation of organic residues, and compost tea, a compost-derived liquid formulated produced by compost water-phase extraction.

View Article and Find Full Text PDF

In this study, the performance of a novel organic tea compost developed for the first time in the world from raw tea waste from tea processing factories and enriched with worms, beneficial microorganisms, and enzymes was tested in comparison to chemical fertilizers in tea plantations in Rize and Artvin provinces, where the most intensive tea cultivation is carried out in Turkey. In the field trials, the developed organic tea vermicompost was incorporated into the root zones of the plants in the tea plantations in amounts of 1000 (OVT1), 2000 (OVT2) and 4000 (OVT4) (kg ha). The experimental design included a control group without OVT applications and positive controls with chemical fertilizers (N: P: K 25:5:10, (CF) 1200 kg ha) commonly used by local growers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!