The responses of pure strains to contaminant (i.e., estrone, E1) exposure have been widely studied. However, few studies about the responses of multispecies microbial aggregates (e.g., periphytic biofilm) to E1 exposure are available. In this study, the changes in physiological activity and community composition of periphytic biofilms before and after E1 exposure were investigated. The results showed that periphytic biofilms exhibited high adaptability to E1 exposure at a concentration of 0.5 mg L based on physiological results. The increase in productivity of extracellular polymeric substances (EPS) after exposure to E1 was the main factor preventing association between E1 and microbial cells. The increase in the activity of superoxide dismutase (SOD) and ATP enzyme activity and the change in the co-occurrence pattern of microbial communities (increasing the relative abundance of Xanthomonadaceae and Cryomorphacea) also protected biofilms from E1 exposure. However, exposure to a high concentration of E1 (>10 mg L) significantly decreased EPS productivity and metabolic activity due to the excessive accumulation of reactive oxygen species. In addition, the abundance of some sensitive species, such as Pseudanabaenaceae, decreased sharply at this concentration. Overall, this study highlighted the feasibility of periphytic biofilms to adapt to E1 exposure at low concentrations in aquatic environments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ecoenv.2020.111513 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!