Objective:  Recent observations support the hypothesis that an imbalance between angiogenic factors has a fundamental role in the pathogenesis of pre-eclampsia and is responsible for the clinical manifestations of the disease. The goal of the present study was to evaluate the sensitivity, specificity, and the best accuracy level of Soluble fms-like tyrosine kinase-1 (sFlt-1), placental growth factor (PlGF), and sFlt-1/PlGF ratio in maternal serum and protein/creatinine ratio in urine sample to define the best cutoff point of these tests to discriminate between the patients with gestational hypertension and the patients with pre-eclampsia, to evaluate the possibility of using them as diagnostic methods.

Methods:  A prospective longitudinal study was performed, and blood samples were collected from 95 pregnant patients with hypertension to measure serum concentrations of biomarkers sFlt-1 and PlGF. Urine samples were collected for protein screening. Significance was set as  < 0.05.

Results:  The sFlt-1/PlGF ratio demonstrated a sensitivity of 57.5% and a specificity of 60% using 50.4 as a cutoff point. The test that showed the best accuracy in the diagnosis of pre-eclampsia was protein/creatinine ratio, with a sensitivity of 78.9% and a specificity of 70% using 0.4 as a cutoff point and showing an area under the receiver operating characteristic curve of 0.80 ( < 0.001).

Conclusion:  No studied laboratory test proved to be fairly accurate for the diagnosis of pre-eclampsia, except for the protein/creatinine ratio. The evidence is insufficient to recommend biomarkers sFlt-1 and PlGF to be used for the diagnosis of pre-eclampsia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10309227PMC
http://dx.doi.org/10.1055/s-0040-1713916DOI Listing

Publication Analysis

Top Keywords

angiogenic factors
8
samples collected
8
evaluation angiogenic
4
factors plgf
4
plgf sflt-1
4
sflt-1 pre-eclampsia
4
pre-eclampsia diagnosis
4
diagnosis objective
4
objective  recent
4
 recent observations
4

Similar Publications

The Landscape of Vascular Endothelial Growth Factor Inhibition in Retinal Diseases.

Invest Ophthalmol Vis Sci

January 2025

John F. Hardesty, MD, Department of Ophthalmology and Visual Sciences, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States.

Ever since the US Food and Drug Administration (FDA) approved the first vascular endothelial growth factor (VEGF) antagonist 2 decades ago, inhibitors of VEGF have revolutionized the treatment of a variety of ocular disorders involving pathologic neovascularization and retinal exudation. In this perspective, we evaluate the current status of anti-VEGF therapies and the real-world challenges encountered with maintaining therapeutic outcomes. Finally, we describe novel VEGF-based and combinatorial approaches that are in clinical development.

View Article and Find Full Text PDF

We hypothesized that a strategy employing tissue-specific endothelial cells (EC) might facilitate the identification of tissue- or organ-specific vascular functions of ubiquitous metabolites. An unbiased approach was employed to identify water-soluble small molecules with mitogenic activity on choroidal EC. We identified adenosine diphosphate (ADP) as a candidate, following biochemical purification from mouse EL4 lymphoma extracts.

View Article and Find Full Text PDF

Background: Colorectal cancer (CRC) poses a substantial global health concern, exhibits inconspicuous early symptoms, and is typically diagnosed at advanced stages leading to unfavorable outcomes. The intricate tumor microenvironment plays a crucial role in CRC development and progression, where chemokines contribute significantly. These chemokines exhibit widespread expression within tumor cells, facilitating immune cell infiltration, angiogenesis, and the establishment of distant metastases.

View Article and Find Full Text PDF

Nuclear factor-κB (NF-κB) cell signaling pathway is essential for the progression and development of numerous human disorders, including cancer. NF-κB signaling pathway regulates a wide range of physiological processes, such as cell survival, growth, and migration. Deregulated NF-kB signaling resulted in unregulated cell proliferation, viability, movement, and invasion, thus promoting tumor development.

View Article and Find Full Text PDF

Researchers in the field of regenerative medicine have consistently focused on the biomimetic design of engineered bone materials on the basis of the microstructure of natural bone tissue. Additionally, the effects of the micromorphological characteristics of these materials on angiogenesis have garnered increasing attention. , the orientation and diameter of scaffold materials can exert different effects on osteogenesis and vascularisation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!