In this work, germanium nanowires rendered fully amorphous via xenon ion irradiation have been annealed within a transmission electron microscope to induce crystallization. During annealing crystallites appeared in some nanowires whilst others remained fully amorphous. Remarkably, even when nucleation occurred, large sections of the nanowires remained amorphous even though the few crystallites embedded in the amorphous phase were formed at a minimum of 200 °C above the temperature for epitaxial growth and 100 °C above the temperature for random nucleation and growth in bulk germanium. Furthermore, the presence of crystallites was observed to depend on the diameter of the nanowire. Indeed, the formation of crystallites occurred at a higher annealing temperature in thin nanowires compared with thicker ones. Additionally, nanowires with a diameter above 55 nm were made entirely crystalline when the annealing was performed at the temperature normally required for crystallization in germanium (i.e. 500 °C). It is proposed that oxygen atoms hinder both the formation and the growth of crystallites. Furthermore, as crystallites must reach a minimum size to survive and grow within the amorphous nanowires, the instability of crystallites may also play a limited role for the thinnest nanowires.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6528/abcef1 | DOI Listing |
Crystals (Basel)
January 2018
National Institute of Standards and Technology (NIST), Boulder, CO 80305, USA.
While GaN nanowires (NWs) offer an attractive architecture for a variety of nanoscale optical, electronic, and mechanical devices, defects such as crystal polarity inversion domains (IDs) can limit device performance. Moreover, the formation of such defects during NW growth is not fully understood. In this study, we use transmission electron microscopy (TEM) and atom probe tomography (APT) to investigate the effects of sub-monolayer contamination at the regrowth interface in GaN NWs grown by selective-area molecular beam epitaxy (MBE).
View Article and Find Full Text PDFNano Lett
January 2025
Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.
The development of viscous-crude oil and water separation technology is important for overcoming pollution caused by oil spills. Although some separators responding to light, electric, and temperature have been proposed, their poor structural homogeneity and inferior controllability, together with weak capillary forces, hinder the rapid salvage of viscous crude oil. Herein, a Joule-heated hydrophobic porous oil/water separator is reported, which has advantages of low energy consumption (169.
View Article and Find Full Text PDFLangmuir
January 2025
State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
Controllable preparation of inorganic nanomaterials with specific morphology and structure is very important for their applications in various fields. Herein, a general strategy was proposed to controllably synthesize nano-CaCO via a water-in-oil microemulsion method in the rotating packed bed reactor. By tuning key parameters, nano-CaCO with four primarily analyzed morphologies, including spherical, spindle-like, clustered, or linear formations, can be selectively obtained.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Department of General Surgery, Hui Ya Hospital of The First Affiliated Hospital, Sun Yat-Sen University, Huizhou, 516081, Guangdong, China.
Self-supported ultrathin PtRuMoCoNi high-entropy alloy nanowires (HEANWs) were synthesized by a one-pot co-reduction method, whose peroxidase (POD)-like activity and catalytic mechanism were elaborated in detail. As expected, the PtRuMoCoNi HEANWs showed excellent POD-like activity. It can quickly catalyze the oxidization of colorless 3,3',5,5'-tetramethylbenzidine (TMB) to blue TMB through decomposition of HO to superoxide radicals.
View Article and Find Full Text PDFNanotechnology
January 2025
Xi'an Jiaotong University, xian ning west road 28#, xi'an, Xi'an, None Selected, 710049, CHINA.
Accurate and rapid diagnosis of traumatic brain injury (TBI) is essential for high-quality medical services. Nonetheless, the current diagnostic platform still has challenges in rapidly and accurately analysing clinical samples. Here, we prepared a highly stable, repeatable and sensitive gold-plated silver core-shell nanowire (Ag@AuNWs) for surface-enhanced Raman spectroscopy (SERS) metabolic fingerprint diagnosis of TBI.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!