A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The effect of demographic and environmental variability on disease outbreak for a dengue model with a seasonally varying vector population. | LitMetric

Seasonal changes in temperature, humidity, and rainfall affect vector survival and emergence of mosquitoes and thus impact the dynamics of vector-borne disease outbreaks. Recent studies of deterministic and stochastic epidemic models with periodic environments have shown that the average basic reproduction number is not sufficient to predict an outbreak. We extend these studies to time-nonhomogeneous stochastic dengue models with demographic variability wherein the adult vectors emerge from the larval stage vary periodically. The combined effects of variability and periodicity provide a better understanding of the risk of dengue outbreaks. A multitype branching process approximation of the stochastic dengue model near the disease-free periodic solution is used to calculate the probability of a disease outbreak. The approximation follows from the solution of a system of differential equations derived from the backward Kolmogorov differential equation. This approximation shows that the risk of a disease outbreak is also periodic and depends on the particular time and the number of the initial infected individuals. Numerical examples are explored to demonstrate that the estimates of the probability of an outbreak from that of branching process approximations agree well with that of the continuous-time Markov chain. In addition, we propose a simple stochastic model to account for the effects of environmental variability on the emergence of adult vectors from the larval stage.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mbs.2020.108516DOI Listing

Publication Analysis

Top Keywords

disease outbreak
12
environmental variability
8
dengue model
8
stochastic dengue
8
adult vectors
8
larval stage
8
branching process
8
outbreak
5
demographic environmental
4
variability
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!