Magnons have proven to be a promising candidate for low-power wave-based computing. The ability to encode information not only in amplitude but also in phase allows for increased data transmission rates. However, efficiently exciting nanoscale spin waves for a functional device requires sophisticated lithography techniques and therefore, remains a challenge. Here, we report on a method to measure the full spin wave isofrequency contour for a given frequency and field. A single antidot within a continuous thin film excites wave vectors along all directions within a single excitation geometry. Varying structural parameters or introducing Dzyaloshinskii-Moriya interaction allows the manipulation and control of the isofrequency contour, which is desirable for the fabrication of future magnonic devices. Additionally, the same antidot structure is utilized as a multipurpose spin wave device. Depending on its position with respect to the microstrip antenna, it can either be an emitter for short spin waves or a directional converter for incoming plane waves. Using simulations we show that such a converter structure is capable of generating a coherent spin wave beam. By introducing a short wavelength spin wave beam into existing magnonic gate logic, it is conceivable to reduce the size of devices to the micrometer scale. This method gives access to short wavelength spin waves to a broad range of magnonic devices without the need for refined sample preparation techniques. The presented toolbox for spin wave manipulation, emission, and conversion is a crucial step for spin wave optics and gate logic.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7760108PMC
http://dx.doi.org/10.1021/acsnano.0c07076DOI Listing

Publication Analysis

Top Keywords

spin wave
24
spin waves
16
spin
10
emission conversion
8
short spin
8
isofrequency contour
8
magnonic devices
8
wave beam
8
short wavelength
8
wavelength spin
8

Similar Publications

Quantum computers promise a qualitative speedup in solving a broad spectrum of practical optimization problems. The latter can be mapped onto the task of finding low-energy states of spin glasses, which is known to be exceedingly difficult. Using D-Wave's 5000-qubit quantum processor, we demonstrate that a recently proposed iterative cyclic quantum annealing algorithm can find deep low-energy states in record time.

View Article and Find Full Text PDF

Harnessing the Electronic Spin States of Single Atoms for Precise Electromagnetic Modulation.

Adv Mater

December 2024

Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China.

By manipulating their asymmetric electronic spin states, the unique electronic structures and unsaturated coordination environments of single atoms can be effectively harnessed to control their magnetic properties. In this research, the first investigation is presented into the regulation of magnetic properties through the electronic spin states of single atoms. Magnetic single-atom one-dimensional materials, M-N-C/ZrO (M = Fe, Co, Ni), with varying electronic spin states, are design and synthesize based on the electronic orbital structure model.

View Article and Find Full Text PDF

Using a full-wave theory to analyze the light beam scattering at sharp interfaces, we reexamine the anomalous spin-orbit interaction (SOI) around the Fresnel coefficient (FC) singularities. We evaluate the spin-dependent beam shifts near the singularity for three typical optical interfaces, comparing our results with existing ones. Existing theories neglect the contribution of the wave vector component near the FC singularities, potentially leading to erroneous results.

View Article and Find Full Text PDF

Nonvolatile Ferroic and Topological Phase Control under Nonresonant Light.

J Phys Chem Lett

December 2024

Center for Alloy Innovation and Design, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China.

Light-matter interaction is a long-standing promising topic that can be dated back to a few centuries ago and has witnessed the long-term debate between the particle and wave nature of light. In modern condensed matter physics and materials science, light usually serves as a detection tool to effectively characterize the physical and chemical features of samples. The light modulation on intrinsic properties of materials, such as atomic geometries, electronic bands, and magnetic behaviors, is more intriguing for information control and storage.

View Article and Find Full Text PDF

The antiferromagnetic structure of Yb_{3}Ga_{5}O_{12} is identified by neutron diffraction experiments below the previously known transition at T_{λ}=54  mK. The magnetic propagation vector is found to be k=(1/2,1/2,0), an unusual wave vector in the garnet structure. The associated complex magnetic structure highlights the role of exchange interactions in a nearly isotropic system dominated by dipolar interactions and finds echoes with exotic structures theoretically proposed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!