Characterization of Single-Cell Osmotic Swelling Dynamics for New Physical Biomarkers.

Anal Chem

Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, 1111 Engineering Drive, UCB 427, Boulder, Colorado 80309, United States.

Published: January 2021

Characterization of cell physical biomarkers is vital to understand cell properties and applicable for disease diagnostics. Current methods used to analyze physical phenotypes involve external forces to deform the cells. Alternatively, internal tension forces via osmotic swelling can also deform the cells. However, an established assumption contends that the forces generated during hypotonic swelling concentrated on the plasma membrane are incapable of assessing the physical properties of nucleated cells. Here, we utilized an osmotic swelling approach to characterize different types of nucleated cells. Using a microfluidic device for cell trapping arrays with truncated hanging micropillars (CellHangars), we isolated single cells and evaluated the swelling dynamics during the hypotonic challenge at 1 s time resolution. We demonstrated that cells with different mechanical phenotypes showed unique swelling dynamics signature. Different types of cells can be classified with an accuracy of up to ∼99%. We also showed that swelling dynamics can detect cellular mechanical property changes due to cytoskeleton disruption. Considering its simplicity, swelling dynamics offers an invaluable label-free physical biomarker for cells with potential applications in both biological studies and clinical practice.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.0c02289DOI Listing

Publication Analysis

Top Keywords

swelling dynamics
20
osmotic swelling
12
swelling
8
physical biomarkers
8
cells
8
deform cells
8
nucleated cells
8
dynamics
5
physical
5
characterization single-cell
4

Similar Publications

Hydronium Ions Are Less Excluded from Hydrophobic Polymer-Water Interfaces than Hydroxide Ions.

J Phys Chem B

December 2024

Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.

The cloud point temperatures of aqueous poly(-isopropylacrylamide) (PNIPAM) and poly(ethylene) oxide (PEO) solutions were measured from pH 1.0 to pH 13.0 at a constant ionic strength of 100 mM.

View Article and Find Full Text PDF

Background: Soft-tissue sarcomas are rare tumors of the soft tissue. Recent diagnostic studies mainly dealt with conventional image analysis and included only a few cases. This study investigated whether low- and high-proliferative soft tissue sarcomas can be differentiated using conventional imaging and radiomics features on MRI.

View Article and Find Full Text PDF

Sulfonamide-Pyrazole derivatives as next-generation Cyclooxygenase-2 enzyme inhibitors: From molecular design to in vivo efficacy.

Int J Biol Macromol

December 2024

Applied Organic Chemistry Department, National Research Center, Dokki, Cairo 12622, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Pharos University in Alexandria, Canal El Mahmoudia St., Alexandria 21648, Egypt. Electronic address:

The current research focuses on the design and synthesis of celecoxib analogues incorporating sulphonamide pyrazole moieties 4, 5, 6a-e, and 7a-f with the aim of achieving a broad range of COX-2 selectivity in vitro. Among these, compounds 6b-d, 7a, 7e, and 7d exhibited potent inhibition, with IC values ranging between 0.05 and 0.

View Article and Find Full Text PDF

This paper first conducted a shale injection CO seepage experiment based on an improved single-vessel pressure pulse attenuation method. The experimental results reveal that the evolution pattern of shale permeability with respect to pore pressure can be divided into before and after phase change. The overall trend is that it first decreases and then increases, which is not a simple exponential form.

View Article and Find Full Text PDF

Dynamic-Cross-Linked, Regulated, and Controllable Mineralization Degree and Morphology of Collagen Biomineralization.

J Funct Biomater

November 2024

Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Department of Biomedical Engineering, College of Chemistry and Life Sciences, Beijing University of Technology, Beijing 100124, China.

The cross-linking process of collagen is one of the more important ways to improve the mineralization ability of collagen. However, the regulatory effect of dynamic cross-linking on biomineralization in vitro remains unclear. Dynamic-cross-linked mineralized collagen under different cross-linking processes, according to the process of cross-linking and mineralization of natural bone, was prepared in this study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!