AI Article Synopsis

  • The new computational model for dopamine transmission effectively simulates release, diffusion, and uptake processes, accounting for both synaptic and volume transmission while maintaining physiological accuracy.
  • Our findings indicate that while dopamine spreads into surrounding areas, its effects are primarily localized at the synaptic level, minimizing interaction with neighboring synapses.
  • Variability in dopamine signaling is suggested to influence cognitive performance, with different activation scenarios leading to unique variability characteristics that may explain observable differences in behavior, especially related to addiction and reward processing.

Article Abstract

Computational modeling of dopamine transmission is challenged by complex underlying mechanisms. Here we present a new computational model that (I) simultaneously regards release, diffusion and uptake of dopamine, (II) considers multiple terminal release events and (III) comprises both synaptic and volume transmission by incorporating the geometry of the synaptic cleft. We were able to validate our model in that it simulates concentration values comparable to physiological values observed in empirical studies. Further, although synaptic dopamine diffuses into extra-synaptic space, our model reflects a very localized signal occurring on the synaptic level, i.e. synaptic dopamine release is negligibly recognized by neighboring synapses. Moreover, increasing evidence suggests that cognitive performance can be predicted by signal variability of neuroimaging data (e.g. BOLD). Signal variability in target areas of dopaminergic neurons (striatum, cortex) may arise from dopamine concentration variability. On that account we compared spatio-temporal variability in a simulation mimicking normal dopamine transmission in striatum to scenarios of enhanced dopamine release and dopamine uptake inhibition. We found different variability characteristics between the three settings, which may in part account for differences in empirical observations. From a clinical perspective, differences in striatal dopaminergic signaling contribute to differential learning and reward processing, with relevant implications for addictive- and compulsive-like behavior. Specifically, dopaminergic tone is assumed to impact on phasic dopamine and hence on the integration of reward-related signals. However, in humans DA tone is classically assessed using PET, which is an indirect measure of endogenous DA availability and suffers from temporal and spatial resolution issues. We discuss how this can lead to discrepancies with observations from other methods such as microdialysis and show how computational modeling can help to refine our understanding of DA transmission.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7728201PMC
http://dx.doi.org/10.1371/journal.pcbi.1008410DOI Listing

Publication Analysis

Top Keywords

dopamine release
12
dopamine
10
release diffusion
8
diffusion uptake
8
computational model
8
synaptic volume
8
volume transmission
8
computational modeling
8
dopamine transmission
8
synaptic dopamine
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!