We examined the effect of a labile soil amendment, compost, and recalcitrant biochar on soil microbial community structure, diversity, and activity during turfgrass establishment. Two application rates of biochar (B1 at 12.5 t ha-1and B2 at 25 t ha-1), a 5 centimeter (cm) green waste compost treatment (CM) in top soil, a treatment with 12.5 t ha-1 biochar and 5 cm compost (B1+CM), and an unamended control (CK) treatment were prepared and seeded with tall fescue. Overall, results of phospholipid fatty acid analysis (PLFA) profiling and Illumina high-throughput sequencing of 16S rRNA genes amplified from soil DNA revealed significant shifts in microbial community structures in the compost amended soils whereas in biochar amended soils communities were more similar to the control, unamended soil. Similarly, increases in enzymatic rates (6-56%) and nitrogen-induced respiration (94%) were all largest in compost amended soils, with biochar amended soils exhibiting similar patterns to the control soils. Both biochar and compost amendments impacted microbial community structures and functions, but compost amendment, whether applied alone or co-applied with biochar, exhibited the strongest shifts in the microbial community metrics examined. Our results suggest application of compost to soils in need of microbiome change (reclamation projects) or biochar when the microbiome is functioning and long-term goals such as carbon sequestration are more desirable.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7703933 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0242209 | PLOS |
PLoS One
January 2025
Department of Earth and Environmental Sciences, University of Illinois at Chicago, Chicago, IL, United States of America.
Municipal solid waste (MSW) landfills represent underexplored microbial ecosystems. Landfills contain variable amounts of antibiotic and construction and demolition (C&D) wastes, which have the potential to alter microbial metabolism due to biocidal or redox active components, and these effects are largely underexplored. To circumvent the challenge of MSW heterogeneity, we conducted a 65-day time series study on simulated MSW microcosms to assess microbiome changes using 16S rRNA sequencing in response to 1) Fe(OH)3 and 2) Na2SO4 to represent redox active components of C&D waste as well as 3) antibiotics.
View Article and Find Full Text PDFJ Infect Dis
January 2025
Department of Medicine, University of Washington, Seattle, WA, USA.
Background: The association between bacterial vaginosis (BV) and increased HIV acquisition risk may be related to concentrations of HIV-susceptible immune cells in the cervix.
Methods: Participants (31 with BV and 30 with normal microbiota) underwent cervical biopsy at a single visit. Immune cells were quantified and sorted using flow cytometry (N=55), localization assessed by immunofluorescence (N=16), and function determined by bulk RNA sequencing (RNA-seq) of live CD45+ cells (N=21).
Ann Rheum Dis
January 2025
Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA. Electronic address:
Objectives: This study aims to elucidate the microbial signatures associated with autoimmune diseases, particularly systemic lupus erythematosus (SLE) and inflammatory bowel disease (IBD), compared with colorectal cancer (CRC), to identify unique biomarkers and shared microbial mechanisms that could inform specific treatment protocols.
Methods: We analysed metagenomic datasets from patient cohorts with six autoimmune conditions-SLE, IBD, multiple sclerosis, myasthenia gravis, Graves' disease and ankylosing spondylitis-contrasting these with CRC metagenomes to delineate disease-specific microbial profiles. The study focused on identifying predictive biomarkers from species profiles and functional genes, integrating protein-protein interaction analyses to explore effector-like proteins and their targets in key signalling pathways.
Ann Rheum Dis
January 2025
Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
The increasing prevalence of autoimmune and immune-mediated diseases (AIMDs) underscores the need to understand environmental factors that contribute to their pathogenesis, with the microbiome emerging as a key player. Despite significant advancements in understanding how the microbiome influences physiological and inflammatory responses, translating these findings into clinical practice remains challenging. This viewpoint reviews the progress and obstacles in microbiome research related to AIMDs, examining molecular techniques that enhance our understanding of microbial contributions to disease.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
School of Geography, Nanjing Normal University, Nanjing, 210023, China.
Despite advances in dispersal mechanisms and risk assessment of antibiotic resistance genes (ARGs), how plants influence ARG contamination in agricultural soils remains underexplored. Here, the impacts of plant species and diversity on ARGs and mobile genetic elements (MGEs) in three agricultural soils are comprehensively investigated in a pot experiment. The results indicate that increased plant diversity reduces ARGs and MGEs abundance by 19.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!